Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178492071> ?p ?o ?g. }
- W3178492071 endingPage "116929" @default.
- W3178492071 startingPage "116929" @default.
- W3178492071 abstract "The void fraction is a key parameter for calculating the average density and pressure gradient and analyzing the flow conditions in gas–liquid two-phase flow. However, due to the complexity and variability of gas–liquid two-phase annular flow, the void fraction measurement has been an unsolved scientific problem in scientific research and industrial applications. In this study, a new high-precision real-time void fraction prediction model is proposed by combining the energy feature extraction from the empirical modal decomposition (EMD) method, the anomaly filtering from the kernel ridge regression (KRR), and ensemble learning from the extreme gradient boosting (XGBoost). To further validate the prediction performance of the model, it is compared with the lasso regression model (LASSO) based on the EMD decomposition method and a single XGBoost model. The results show that the prediction accuracy can be guaranteed in the case of anomalous energy eigenvalues." @default.
- W3178492071 created "2021-07-19" @default.
- W3178492071 creator A5008868985 @default.
- W3178492071 creator A5010903174 @default.
- W3178492071 creator A5021174391 @default.
- W3178492071 creator A5038479969 @default.
- W3178492071 creator A5038564277 @default.
- W3178492071 creator A5038836690 @default.
- W3178492071 creator A5089520762 @default.
- W3178492071 creator A5090246613 @default.
- W3178492071 date "2022-01-01" @default.
- W3178492071 modified "2023-10-17" @default.
- W3178492071 title "Void fraction measurement using modal decomposition and ensemble learning in vertical annular flow" @default.
- W3178492071 cites W1170214759 @default.
- W3178492071 cites W1978541339 @default.
- W3178492071 cites W1989532798 @default.
- W3178492071 cites W2041606062 @default.
- W3178492071 cites W2071437279 @default.
- W3178492071 cites W2268914338 @default.
- W3178492071 cites W2311845124 @default.
- W3178492071 cites W2565419829 @default.
- W3178492071 cites W2743680082 @default.
- W3178492071 cites W2769788551 @default.
- W3178492071 cites W2799310842 @default.
- W3178492071 cites W2894229023 @default.
- W3178492071 cites W2899959899 @default.
- W3178492071 cites W2904673256 @default.
- W3178492071 cites W2913005526 @default.
- W3178492071 cites W2917228683 @default.
- W3178492071 cites W2920602004 @default.
- W3178492071 cites W2922946229 @default.
- W3178492071 cites W2940325047 @default.
- W3178492071 cites W2945421839 @default.
- W3178492071 cites W2954179765 @default.
- W3178492071 cites W2956153480 @default.
- W3178492071 cites W2967002257 @default.
- W3178492071 cites W2976604267 @default.
- W3178492071 cites W2979890590 @default.
- W3178492071 cites W2980797085 @default.
- W3178492071 cites W2985905357 @default.
- W3178492071 cites W3000189979 @default.
- W3178492071 cites W3004203398 @default.
- W3178492071 cites W3037390982 @default.
- W3178492071 cites W3038201098 @default.
- W3178492071 cites W3041236601 @default.
- W3178492071 cites W3046484417 @default.
- W3178492071 cites W3046831122 @default.
- W3178492071 cites W3048787834 @default.
- W3178492071 cites W3090004256 @default.
- W3178492071 cites W3091413509 @default.
- W3178492071 cites W3114451272 @default.
- W3178492071 doi "https://doi.org/10.1016/j.ces.2021.116929" @default.
- W3178492071 hasPublicationYear "2022" @default.
- W3178492071 type Work @default.
- W3178492071 sameAs 3178492071 @default.
- W3178492071 citedByCount "5" @default.
- W3178492071 countsByYear W31784920712022 @default.
- W3178492071 countsByYear W31784920712023 @default.
- W3178492071 crossrefType "journal-article" @default.
- W3178492071 hasAuthorship W3178492071A5008868985 @default.
- W3178492071 hasAuthorship W3178492071A5010903174 @default.
- W3178492071 hasAuthorship W3178492071A5021174391 @default.
- W3178492071 hasAuthorship W3178492071A5038479969 @default.
- W3178492071 hasAuthorship W3178492071A5038564277 @default.
- W3178492071 hasAuthorship W3178492071A5038836690 @default.
- W3178492071 hasAuthorship W3178492071A5089520762 @default.
- W3178492071 hasAuthorship W3178492071A5090246613 @default.
- W3178492071 hasConcept C105795698 @default.
- W3178492071 hasConcept C11413529 @default.
- W3178492071 hasConcept C121332964 @default.
- W3178492071 hasConcept C158693339 @default.
- W3178492071 hasConcept C159985019 @default.
- W3178492071 hasConcept C186370098 @default.
- W3178492071 hasConcept C192562407 @default.
- W3178492071 hasConcept C25570617 @default.
- W3178492071 hasConcept C33923547 @default.
- W3178492071 hasConcept C62520636 @default.
- W3178492071 hasConcept C6648577 @default.
- W3178492071 hasConceptScore W3178492071C105795698 @default.
- W3178492071 hasConceptScore W3178492071C11413529 @default.
- W3178492071 hasConceptScore W3178492071C121332964 @default.
- W3178492071 hasConceptScore W3178492071C158693339 @default.
- W3178492071 hasConceptScore W3178492071C159985019 @default.
- W3178492071 hasConceptScore W3178492071C186370098 @default.
- W3178492071 hasConceptScore W3178492071C192562407 @default.
- W3178492071 hasConceptScore W3178492071C25570617 @default.
- W3178492071 hasConceptScore W3178492071C33923547 @default.
- W3178492071 hasConceptScore W3178492071C62520636 @default.
- W3178492071 hasConceptScore W3178492071C6648577 @default.
- W3178492071 hasLocation W31784920711 @default.
- W3178492071 hasOpenAccess W3178492071 @default.
- W3178492071 hasPrimaryLocation W31784920711 @default.
- W3178492071 hasRelatedWork W1982496263 @default.
- W3178492071 hasRelatedWork W2028454084 @default.
- W3178492071 hasRelatedWork W2044927803 @default.
- W3178492071 hasRelatedWork W2045892986 @default.
- W3178492071 hasRelatedWork W2053448926 @default.
- W3178492071 hasRelatedWork W2366012805 @default.