Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178590964> ?p ?o ?g. }
- W3178590964 endingPage "114008" @default.
- W3178590964 startingPage "114008" @default.
- W3178590964 abstract "This paper presents a novel framework for predicting computer-aided engineering (CAE) simulation results using machine learning (ML). The framework is applied to finite element (FE) simulations of dynamic axial crushing of rectangular crush tubes that are typically used in vehicle crashworthiness applications. A virtual design of experiments that varies the size and wall thickness of the FE model is performed to generate the necessary training data. This process generates designs with varying numbers of nodes and elements that are handled by the ML system. However, the explicit design parameters and meshing techniques that were used to generate the training data remain unknown to the ML system. Instead, 3D convolutional neural networks (CNN) autoencoders are used to process the initial FE model data (i.e., nodes, elements, thickness, etc.) to automatically determine these features in an unsupervised manner. A voxelization strategy that operates on the mass of individual nodes is proposed to handle the unstructured nature of the nodes and elements while capturing variations in the wall thickness of the FE models. The flattened latent space generated by the 3D-CNN-autoencoder is then used as input into long-short term memory neural networks (LSTM-NN) to predict the force–displacement response as well as the deformation of the mesh. The training process of both the 3D-CNN-autoencoders and LSTM-NN is systematically studied to highlight the robustness of the framework. The proposed ML system utilizes only 16% of the simulations generated in the virtual design of experiments to achieve good predictive capability. Once trained, the proposed framework can predict the deformation of the mesh and resulting force–displacement response of a new design up to ∼330 and ∼2,960,000 times faster, respectively, than the conventional FE approach with good accuracy. This computational speed up offers design engineers and scientists a potential tool for accelerating the design exploration process with CAE simulation tools, such as FE analysis." @default.
- W3178590964 created "2021-07-19" @default.
- W3178590964 creator A5037448089 @default.
- W3178590964 creator A5052290432 @default.
- W3178590964 creator A5063372556 @default.
- W3178590964 creator A5072219664 @default.
- W3178590964 creator A5076403540 @default.
- W3178590964 date "2021-11-01" @default.
- W3178590964 modified "2023-10-17" @default.
- W3178590964 title "A machine learning framework for accelerating the design process using CAE simulations: An application to finite element analysis in structural crashworthiness" @default.
- W3178590964 cites W1498436455 @default.
- W3178590964 cites W1689711448 @default.
- W3178590964 cites W1968019921 @default.
- W3178590964 cites W1970793914 @default.
- W3178590964 cites W1986649521 @default.
- W3178590964 cites W1990533698 @default.
- W3178590964 cites W2002383764 @default.
- W3178590964 cites W2008361525 @default.
- W3178590964 cites W2011346946 @default.
- W3178590964 cites W2019897982 @default.
- W3178590964 cites W2025768430 @default.
- W3178590964 cites W2051812123 @default.
- W3178590964 cites W2061895083 @default.
- W3178590964 cites W2063022389 @default.
- W3178590964 cites W2063747306 @default.
- W3178590964 cites W2064675550 @default.
- W3178590964 cites W2066472236 @default.
- W3178590964 cites W2082913948 @default.
- W3178590964 cites W2087070363 @default.
- W3178590964 cites W2092781360 @default.
- W3178590964 cites W2097010530 @default.
- W3178590964 cites W2100495367 @default.
- W3178590964 cites W2103467996 @default.
- W3178590964 cites W2112796928 @default.
- W3178590964 cites W2113208379 @default.
- W3178590964 cites W2116361347 @default.
- W3178590964 cites W2123442489 @default.
- W3178590964 cites W2139114804 @default.
- W3178590964 cites W2147800946 @default.
- W3178590964 cites W2173025977 @default.
- W3178590964 cites W2190194936 @default.
- W3178590964 cites W2256578114 @default.
- W3178590964 cites W2280321044 @default.
- W3178590964 cites W2301358467 @default.
- W3178590964 cites W2338788740 @default.
- W3178590964 cites W2617008217 @default.
- W3178590964 cites W2621212730 @default.
- W3178590964 cites W2745892997 @default.
- W3178590964 cites W2750467516 @default.
- W3178590964 cites W2782429711 @default.
- W3178590964 cites W2797161036 @default.
- W3178590964 cites W2800474185 @default.
- W3178590964 cites W2913340405 @default.
- W3178590964 cites W2917534473 @default.
- W3178590964 cites W2936178614 @default.
- W3178590964 cites W2971987915 @default.
- W3178590964 cites W2975025423 @default.
- W3178590964 cites W3036734221 @default.
- W3178590964 cites W3043838149 @default.
- W3178590964 cites W3080517163 @default.
- W3178590964 cites W3084276559 @default.
- W3178590964 cites W3093605970 @default.
- W3178590964 cites W3095712102 @default.
- W3178590964 doi "https://doi.org/10.1016/j.cma.2021.114008" @default.
- W3178590964 hasPublicationYear "2021" @default.
- W3178590964 type Work @default.
- W3178590964 sameAs 3178590964 @default.
- W3178590964 citedByCount "18" @default.
- W3178590964 countsByYear W31785909642022 @default.
- W3178590964 countsByYear W31785909642023 @default.
- W3178590964 crossrefType "journal-article" @default.
- W3178590964 hasAuthorship W3178590964A5037448089 @default.
- W3178590964 hasAuthorship W3178590964A5052290432 @default.
- W3178590964 hasAuthorship W3178590964A5063372556 @default.
- W3178590964 hasAuthorship W3178590964A5072219664 @default.
- W3178590964 hasAuthorship W3178590964A5076403540 @default.
- W3178590964 hasConcept C101738243 @default.
- W3178590964 hasConcept C104317684 @default.
- W3178590964 hasConcept C111919701 @default.
- W3178590964 hasConcept C127413603 @default.
- W3178590964 hasConcept C135628077 @default.
- W3178590964 hasConcept C154945302 @default.
- W3178590964 hasConcept C185592680 @default.
- W3178590964 hasConcept C2779240047 @default.
- W3178590964 hasConcept C34972735 @default.
- W3178590964 hasConcept C41008148 @default.
- W3178590964 hasConcept C50644808 @default.
- W3178590964 hasConcept C55493867 @default.
- W3178590964 hasConcept C63479239 @default.
- W3178590964 hasConcept C66938386 @default.
- W3178590964 hasConcept C78519656 @default.
- W3178590964 hasConcept C81363708 @default.
- W3178590964 hasConcept C98045186 @default.
- W3178590964 hasConceptScore W3178590964C101738243 @default.
- W3178590964 hasConceptScore W3178590964C104317684 @default.
- W3178590964 hasConceptScore W3178590964C111919701 @default.
- W3178590964 hasConceptScore W3178590964C127413603 @default.
- W3178590964 hasConceptScore W3178590964C135628077 @default.