Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178671830> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W3178671830 abstract "Spatial regression of random fields based on potentially biased sensing information is proposed in this paper. One major concern in such applications is that since it is not known a-priori what the accuracy of the collected data from each sensor is, the performance can be negatively affected if the collected information is not fused appropriately. For example, the data collector may measure the phenomenon inappropriately, or alternatively, the sensors could be out of calibration, thus introducing random gain and bias to the measurement process. Such readings would be systematically distorted, leading to incorrect estimation of the spatial field. To combat this detrimental effect, we develop a robust version of the spatial field model based on a mixture of Gaussian process experts. We then develop two different approaches for Bayesian spatial field reconstruction: the first algorithm is the Spatial Best Linear Unbiased Estimator (S-BLUE), in which one considers the quadratic loss function and restricts the estimator to the linear family of transformations; the second algorithm is based on empirical Bayes, which utilizes a two-stage estimation procedure to produce accurate predictive inference in the presence of “misbehaving” sensors. In addition, we develop the distributed version of these two approaches to drastically improve the computational efficiency in large-scale settings. We present extensive simulation results using both synthetic datasets and semi-synthetic datasets with real temperature measurements and simulated distortions to draw useful conclusions regarding the performance of each of the algorithms." @default.
- W3178671830 created "2021-07-19" @default.
- W3178671830 creator A5038952162 @default.
- W3178671830 creator A5051994726 @default.
- W3178671830 creator A5087616647 @default.
- W3178671830 date "2020-01-01" @default.
- W3178671830 modified "2023-09-23" @default.
- W3178671830 title "Bayesian Spatial Field Reconstruction with Unknown Distortions in Sensor Networks" @default.
- W3178671830 doi "https://doi.org/10.2139/ssrn.3656297" @default.
- W3178671830 hasPublicationYear "2020" @default.
- W3178671830 type Work @default.
- W3178671830 sameAs 3178671830 @default.
- W3178671830 citedByCount "0" @default.
- W3178671830 crossrefType "journal-article" @default.
- W3178671830 hasAuthorship W3178671830A5038952162 @default.
- W3178671830 hasAuthorship W3178671830A5051994726 @default.
- W3178671830 hasAuthorship W3178671830A5087616647 @default.
- W3178671830 hasBestOaLocation W31786718302 @default.
- W3178671830 hasConcept C105795698 @default.
- W3178671830 hasConcept C107673813 @default.
- W3178671830 hasConcept C111472728 @default.
- W3178671830 hasConcept C11413529 @default.
- W3178671830 hasConcept C119857082 @default.
- W3178671830 hasConcept C121332964 @default.
- W3178671830 hasConcept C124101348 @default.
- W3178671830 hasConcept C130402806 @default.
- W3178671830 hasConcept C138885662 @default.
- W3178671830 hasConcept C154945302 @default.
- W3178671830 hasConcept C159620131 @default.
- W3178671830 hasConcept C160234255 @default.
- W3178671830 hasConcept C163716315 @default.
- W3178671830 hasConcept C185429906 @default.
- W3178671830 hasConcept C202444582 @default.
- W3178671830 hasConcept C33923547 @default.
- W3178671830 hasConcept C41008148 @default.
- W3178671830 hasConcept C49781872 @default.
- W3178671830 hasConcept C61326573 @default.
- W3178671830 hasConcept C62520636 @default.
- W3178671830 hasConcept C75553542 @default.
- W3178671830 hasConcept C81692654 @default.
- W3178671830 hasConcept C9652623 @default.
- W3178671830 hasConcept C9810830 @default.
- W3178671830 hasConceptScore W3178671830C105795698 @default.
- W3178671830 hasConceptScore W3178671830C107673813 @default.
- W3178671830 hasConceptScore W3178671830C111472728 @default.
- W3178671830 hasConceptScore W3178671830C11413529 @default.
- W3178671830 hasConceptScore W3178671830C119857082 @default.
- W3178671830 hasConceptScore W3178671830C121332964 @default.
- W3178671830 hasConceptScore W3178671830C124101348 @default.
- W3178671830 hasConceptScore W3178671830C130402806 @default.
- W3178671830 hasConceptScore W3178671830C138885662 @default.
- W3178671830 hasConceptScore W3178671830C154945302 @default.
- W3178671830 hasConceptScore W3178671830C159620131 @default.
- W3178671830 hasConceptScore W3178671830C160234255 @default.
- W3178671830 hasConceptScore W3178671830C163716315 @default.
- W3178671830 hasConceptScore W3178671830C185429906 @default.
- W3178671830 hasConceptScore W3178671830C202444582 @default.
- W3178671830 hasConceptScore W3178671830C33923547 @default.
- W3178671830 hasConceptScore W3178671830C41008148 @default.
- W3178671830 hasConceptScore W3178671830C49781872 @default.
- W3178671830 hasConceptScore W3178671830C61326573 @default.
- W3178671830 hasConceptScore W3178671830C62520636 @default.
- W3178671830 hasConceptScore W3178671830C75553542 @default.
- W3178671830 hasConceptScore W3178671830C81692654 @default.
- W3178671830 hasConceptScore W3178671830C9652623 @default.
- W3178671830 hasConceptScore W3178671830C9810830 @default.
- W3178671830 hasLocation W31786718301 @default.
- W3178671830 hasLocation W31786718302 @default.
- W3178671830 hasOpenAccess W3178671830 @default.
- W3178671830 hasPrimaryLocation W31786718301 @default.
- W3178671830 hasRelatedWork W10117340 @default.
- W3178671830 hasRelatedWork W10126740 @default.
- W3178671830 hasRelatedWork W11243512 @default.
- W3178671830 hasRelatedWork W13706206 @default.
- W3178671830 hasRelatedWork W2704661 @default.
- W3178671830 hasRelatedWork W534050 @default.
- W3178671830 hasRelatedWork W6347445 @default.
- W3178671830 hasRelatedWork W695875 @default.
- W3178671830 hasRelatedWork W9982588 @default.
- W3178671830 hasRelatedWork W6346411 @default.
- W3178671830 isParatext "false" @default.
- W3178671830 isRetracted "false" @default.
- W3178671830 magId "3178671830" @default.
- W3178671830 workType "article" @default.