Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178715086> ?p ?o ?g. }
- W3178715086 endingPage "1234" @default.
- W3178715086 startingPage "1234" @default.
- W3178715086 abstract "Statistical regression models have rarely been used for engine exhaust emission parameters. This paper presents a three-step statistical analysis algorithm, which shows increased prediction accuracy when using vibration and sound pressure data as a covariate variable in the exhaust emission prediction model. The first step evaluates the best time domain statistic and the point of collection of engine data. The univariate linear regression model revealed that non-negative time domain statistics are the best predictors. Also, only one statistic evaluated in this study was a statistically significant predictor for all 11 exhaust parameters. The ecological and energy parameters of the engine were analyzed by statistical analysis. The symmetry of the methods was applied in the analysis both in terms of fuel type and in terms of adjustable engine parameters. A three-step statistical analysis algorithm with symmetric statistical regression analysis was used. Fixed engine parameters were evaluated in the second algorithm step. ANOVA revealed that engine power was a strong predictor for fuel mass flow, CO, CO2, NOx, THC, COSick, O2, air mass flow, texhaust, whereas type of fuel was only a predictor of tair and tfuel. Injection timing did not allow predicting any exhaust parameters. In the third step, the best fixed engine parameter and the best time domain statistic was used as a model covariate in ANCOVA model. ANCOVA model showed increased prediction accuracy in all 11 exhausted emission parameters. Moreover, vibration covariate was found to increase model accuracy under higher engine power (12 kW and 20 kW) and using several types of fuels (HVO30, HVO50, SME30, and SME50). Vibration characteristics of diesel engines running on alternative fuels show reliable relationships with engine performance characteristics, including amounts and characteristics of exhaust emissions. Thus, the results received can be used to develop a reliable and inexpensive method to evaluate the impact of various alternative fuel blends on important parameters of diesel engines." @default.
- W3178715086 created "2021-07-19" @default.
- W3178715086 creator A5000186302 @default.
- W3178715086 creator A5008209524 @default.
- W3178715086 creator A5011381411 @default.
- W3178715086 creator A5017854866 @default.
- W3178715086 creator A5034516803 @default.
- W3178715086 creator A5037714759 @default.
- W3178715086 creator A5041674530 @default.
- W3178715086 creator A5060234806 @default.
- W3178715086 date "2021-07-09" @default.
- W3178715086 modified "2023-09-26" @default.
- W3178715086 title "Engine Vibration Data Increases Prognosis Accuracy on Emission Loads: A Novel Statistical Regressions Algorithm Approach for Vibration Analysis in Time Domain" @default.
- W3178715086 cites W1979203698 @default.
- W3178715086 cites W2016038645 @default.
- W3178715086 cites W2035838458 @default.
- W3178715086 cites W2045068459 @default.
- W3178715086 cites W2050059008 @default.
- W3178715086 cites W2090640456 @default.
- W3178715086 cites W2146135637 @default.
- W3178715086 cites W2200777617 @default.
- W3178715086 cites W2299385460 @default.
- W3178715086 cites W2589380014 @default.
- W3178715086 cites W2590805680 @default.
- W3178715086 cites W2599892033 @default.
- W3178715086 cites W2615628045 @default.
- W3178715086 cites W2789904113 @default.
- W3178715086 cites W2790530342 @default.
- W3178715086 cites W2801914836 @default.
- W3178715086 cites W2804441704 @default.
- W3178715086 cites W2902027615 @default.
- W3178715086 cites W2905285565 @default.
- W3178715086 cites W2939624201 @default.
- W3178715086 cites W2977844646 @default.
- W3178715086 cites W2980802462 @default.
- W3178715086 cites W2994781957 @default.
- W3178715086 cites W2996830655 @default.
- W3178715086 cites W2998046934 @default.
- W3178715086 cites W3000724675 @default.
- W3178715086 cites W3008728384 @default.
- W3178715086 cites W3019473275 @default.
- W3178715086 cites W3022005078 @default.
- W3178715086 cites W3036394915 @default.
- W3178715086 cites W3044921080 @default.
- W3178715086 cites W3105108962 @default.
- W3178715086 doi "https://doi.org/10.3390/sym13071234" @default.
- W3178715086 hasPublicationYear "2021" @default.
- W3178715086 type Work @default.
- W3178715086 sameAs 3178715086 @default.
- W3178715086 citedByCount "3" @default.
- W3178715086 countsByYear W31787150862021 @default.
- W3178715086 countsByYear W31787150862022 @default.
- W3178715086 countsByYear W31787150862023 @default.
- W3178715086 crossrefType "journal-article" @default.
- W3178715086 hasAuthorship W3178715086A5000186302 @default.
- W3178715086 hasAuthorship W3178715086A5008209524 @default.
- W3178715086 hasAuthorship W3178715086A5011381411 @default.
- W3178715086 hasAuthorship W3178715086A5017854866 @default.
- W3178715086 hasAuthorship W3178715086A5034516803 @default.
- W3178715086 hasAuthorship W3178715086A5037714759 @default.
- W3178715086 hasAuthorship W3178715086A5041674530 @default.
- W3178715086 hasAuthorship W3178715086A5060234806 @default.
- W3178715086 hasBestOaLocation W31787150861 @default.
- W3178715086 hasConcept C105795698 @default.
- W3178715086 hasConcept C11413529 @default.
- W3178715086 hasConcept C119043178 @default.
- W3178715086 hasConcept C119340705 @default.
- W3178715086 hasConcept C152877465 @default.
- W3178715086 hasConcept C33923547 @default.
- W3178715086 hasConcept C48921125 @default.
- W3178715086 hasConcept C89128539 @default.
- W3178715086 hasConceptScore W3178715086C105795698 @default.
- W3178715086 hasConceptScore W3178715086C11413529 @default.
- W3178715086 hasConceptScore W3178715086C119043178 @default.
- W3178715086 hasConceptScore W3178715086C119340705 @default.
- W3178715086 hasConceptScore W3178715086C152877465 @default.
- W3178715086 hasConceptScore W3178715086C33923547 @default.
- W3178715086 hasConceptScore W3178715086C48921125 @default.
- W3178715086 hasConceptScore W3178715086C89128539 @default.
- W3178715086 hasIssue "7" @default.
- W3178715086 hasLocation W31787150861 @default.
- W3178715086 hasLocation W31787150862 @default.
- W3178715086 hasOpenAccess W3178715086 @default.
- W3178715086 hasPrimaryLocation W31787150861 @default.
- W3178715086 hasRelatedWork W1545592973 @default.
- W3178715086 hasRelatedWork W1978425987 @default.
- W3178715086 hasRelatedWork W2012555585 @default.
- W3178715086 hasRelatedWork W2023285131 @default.
- W3178715086 hasRelatedWork W2053970827 @default.
- W3178715086 hasRelatedWork W2142800157 @default.
- W3178715086 hasRelatedWork W23219763 @default.
- W3178715086 hasRelatedWork W2621946354 @default.
- W3178715086 hasRelatedWork W2979072695 @default.
- W3178715086 hasRelatedWork W4321847880 @default.
- W3178715086 hasVolume "13" @default.
- W3178715086 isParatext "false" @default.
- W3178715086 isRetracted "false" @default.
- W3178715086 magId "3178715086" @default.