Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178731909> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W3178731909 abstract "In order to improve the data quality, the big data cleaning method of distribution network was studied in this paper. First, the Local Outlier Factor (LOF) algorithm based on DBSCAN clustering was used to detect outliers. However, due to the difficulty in determining the LOF threshold, a method of dynamically calculating the threshold based on the transformer districts and time was proposed. Besides, the LOF algorithm combines the statistical distribution method to reduce the misjudgment rate. Aiming at the diversity and complexity of data missing forms in power big data, this paper improved the Random Forest imputation algorithm, which can be applied to various forms of missing data, especially the blocked missing data and even some horizontal or vertical data completely missing. The data in this paper were from real data of 44 transformer districts of a certain 10kV line in distribution network. Experimental results showed that outlier detection was accurate and suitable for any shape and multidimensional power big data. The improved Random Forest imputation algorithm was suitable for all missing forms, with higher imputation accuracy and better model stability. By comparing the network loss prediction between the data using this data cleaning method and the data removing outliers and missing values, it was found that the accuracy of network loss prediction had been improved by nearly 4 percentage points using the data cleaning method mentioned in this paper. Additionally, as the proportion of bad data increased, the difference between the prediction accuracy of cleaned data and that of uncleaned data was greater." @default.
- W3178731909 created "2021-07-19" @default.
- W3178731909 creator A5043383546 @default.
- W3178731909 creator A5044817260 @default.
- W3178731909 creator A5050046701 @default.
- W3178731909 creator A5085352453 @default.
- W3178731909 date "2020-01-01" @default.
- W3178731909 modified "2023-10-16" @default.
- W3178731909 title "A big data cleaning method based on improved CLOF and Random Forest for distribution network" @default.
- W3178731909 doi "https://doi.org/10.17775/cseejpes.2020.04080" @default.
- W3178731909 hasPublicationYear "2020" @default.
- W3178731909 type Work @default.
- W3178731909 sameAs 3178731909 @default.
- W3178731909 citedByCount "3" @default.
- W3178731909 countsByYear W31787319092021 @default.
- W3178731909 countsByYear W31787319092023 @default.
- W3178731909 crossrefType "journal-article" @default.
- W3178731909 hasAuthorship W3178731909A5043383546 @default.
- W3178731909 hasAuthorship W3178731909A5044817260 @default.
- W3178731909 hasAuthorship W3178731909A5050046701 @default.
- W3178731909 hasAuthorship W3178731909A5085352453 @default.
- W3178731909 hasBestOaLocation W31787319091 @default.
- W3178731909 hasConcept C105795698 @default.
- W3178731909 hasConcept C110121322 @default.
- W3178731909 hasConcept C124101348 @default.
- W3178731909 hasConcept C134306372 @default.
- W3178731909 hasConcept C154945302 @default.
- W3178731909 hasConcept C169258074 @default.
- W3178731909 hasConcept C33923547 @default.
- W3178731909 hasConcept C39432304 @default.
- W3178731909 hasConcept C41008148 @default.
- W3178731909 hasConcept C75684735 @default.
- W3178731909 hasConceptScore W3178731909C105795698 @default.
- W3178731909 hasConceptScore W3178731909C110121322 @default.
- W3178731909 hasConceptScore W3178731909C124101348 @default.
- W3178731909 hasConceptScore W3178731909C134306372 @default.
- W3178731909 hasConceptScore W3178731909C154945302 @default.
- W3178731909 hasConceptScore W3178731909C169258074 @default.
- W3178731909 hasConceptScore W3178731909C33923547 @default.
- W3178731909 hasConceptScore W3178731909C39432304 @default.
- W3178731909 hasConceptScore W3178731909C41008148 @default.
- W3178731909 hasConceptScore W3178731909C75684735 @default.
- W3178731909 hasLocation W31787319091 @default.
- W3178731909 hasOpenAccess W3178731909 @default.
- W3178731909 hasPrimaryLocation W31787319091 @default.
- W3178731909 hasRelatedWork W1592683135 @default.
- W3178731909 hasRelatedWork W2043099224 @default.
- W3178731909 hasRelatedWork W2368437561 @default.
- W3178731909 hasRelatedWork W2790695452 @default.
- W3178731909 hasRelatedWork W2899084033 @default.
- W3178731909 hasRelatedWork W2901726430 @default.
- W3178731909 hasRelatedWork W3037784022 @default.
- W3178731909 hasRelatedWork W3160832582 @default.
- W3178731909 hasRelatedWork W4229963900 @default.
- W3178731909 hasRelatedWork W786186891 @default.
- W3178731909 isParatext "false" @default.
- W3178731909 isRetracted "false" @default.
- W3178731909 magId "3178731909" @default.
- W3178731909 workType "article" @default.