Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178956972> ?p ?o ?g. }
- W3178956972 endingPage "226" @default.
- W3178956972 startingPage "216" @default.
- W3178956972 abstract "In order to make renewable fuels and chemicals from microbes, new methods are required to engineer microbes more intelligently. Computational approaches, to engineer strains for enhanced chemical production typically rely on detailed mechanistic models (e.g., kinetic/stoichiometric models of metabolism)—requiring many experimental datasets for their parameterization—while experimental methods may require screening large mutant libraries to explore the design space for the few mutants with desired behaviors. To address these limitations, we developed an active and machine learning approach (ActiveOpt) to intelligently guide experiments to arrive at an optimal phenotype with minimal measured datasets. ActiveOpt was applied to two separate case studies to evaluate its potential to increase valine yields and neurosporene productivity in Escherichia coli. In both the cases, ActiveOpt identified the best performing strain in fewer experiments than the case studies used. This work demonstrates that machine and active learning approaches have the potential to greatly facilitate metabolic engineering efforts to rapidly achieve its objectives." @default.
- W3178956972 created "2021-07-19" @default.
- W3178956972 creator A5028488633 @default.
- W3178956972 creator A5031290916 @default.
- W3178956972 creator A5036126041 @default.
- W3178956972 creator A5051523300 @default.
- W3178956972 creator A5053533157 @default.
- W3178956972 creator A5080274219 @default.
- W3178956972 creator A5089356203 @default.
- W3178956972 date "2021-09-01" @default.
- W3178956972 modified "2023-10-12" @default.
- W3178956972 title "Active and machine learning-based approaches to rapidly enhance microbial chemical production" @default.
- W3178956972 cites W1781531090 @default.
- W3178956972 cites W1964521061 @default.
- W3178956972 cites W1990812533 @default.
- W3178956972 cites W1998633945 @default.
- W3178956972 cites W2002880495 @default.
- W3178956972 cites W2003229972 @default.
- W3178956972 cites W2016566659 @default.
- W3178956972 cites W2018645639 @default.
- W3178956972 cites W2023433267 @default.
- W3178956972 cites W2029999943 @default.
- W3178956972 cites W2038574237 @default.
- W3178956972 cites W2039110673 @default.
- W3178956972 cites W2047360542 @default.
- W3178956972 cites W2054506883 @default.
- W3178956972 cites W2065335949 @default.
- W3178956972 cites W2065785909 @default.
- W3178956972 cites W2078355959 @default.
- W3178956972 cites W2091317547 @default.
- W3178956972 cites W2096245011 @default.
- W3178956972 cites W2107764928 @default.
- W3178956972 cites W2123467717 @default.
- W3178956972 cites W2128215351 @default.
- W3178956972 cites W2130364940 @default.
- W3178956972 cites W2144779133 @default.
- W3178956972 cites W2157007633 @default.
- W3178956972 cites W2158676604 @default.
- W3178956972 cites W2164028644 @default.
- W3178956972 cites W2168059482 @default.
- W3178956972 cites W2170764254 @default.
- W3178956972 cites W2266907177 @default.
- W3178956972 cites W2328166881 @default.
- W3178956972 cites W2342617287 @default.
- W3178956972 cites W2502769832 @default.
- W3178956972 cites W2561960911 @default.
- W3178956972 cites W2766538153 @default.
- W3178956972 cites W2804203222 @default.
- W3178956972 cites W2806394571 @default.
- W3178956972 cites W2949071206 @default.
- W3178956972 cites W3028645112 @default.
- W3178956972 cites W3088231826 @default.
- W3178956972 doi "https://doi.org/10.1016/j.ymben.2021.06.009" @default.
- W3178956972 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34229079" @default.
- W3178956972 hasPublicationYear "2021" @default.
- W3178956972 type Work @default.
- W3178956972 sameAs 3178956972 @default.
- W3178956972 citedByCount "9" @default.
- W3178956972 countsByYear W31789569722022 @default.
- W3178956972 countsByYear W31789569722023 @default.
- W3178956972 crossrefType "journal-article" @default.
- W3178956972 hasAuthorship W3178956972A5028488633 @default.
- W3178956972 hasAuthorship W3178956972A5031290916 @default.
- W3178956972 hasAuthorship W3178956972A5036126041 @default.
- W3178956972 hasAuthorship W3178956972A5051523300 @default.
- W3178956972 hasAuthorship W3178956972A5053533157 @default.
- W3178956972 hasAuthorship W3178956972A5080274219 @default.
- W3178956972 hasAuthorship W3178956972A5089356203 @default.
- W3178956972 hasBestOaLocation W31789569721 @default.
- W3178956972 hasConcept C111919701 @default.
- W3178956972 hasConcept C119857082 @default.
- W3178956972 hasConcept C127413603 @default.
- W3178956972 hasConcept C139719470 @default.
- W3178956972 hasConcept C154945302 @default.
- W3178956972 hasConcept C162324750 @default.
- W3178956972 hasConcept C181199279 @default.
- W3178956972 hasConcept C183696295 @default.
- W3178956972 hasConcept C185592680 @default.
- W3178956972 hasConcept C191908910 @default.
- W3178956972 hasConcept C2778348673 @default.
- W3178956972 hasConcept C41008148 @default.
- W3178956972 hasConcept C55493867 @default.
- W3178956972 hasConcept C6350086 @default.
- W3178956972 hasConcept C70721500 @default.
- W3178956972 hasConcept C77967617 @default.
- W3178956972 hasConcept C86803240 @default.
- W3178956972 hasConcept C98045186 @default.
- W3178956972 hasConceptScore W3178956972C111919701 @default.
- W3178956972 hasConceptScore W3178956972C119857082 @default.
- W3178956972 hasConceptScore W3178956972C127413603 @default.
- W3178956972 hasConceptScore W3178956972C139719470 @default.
- W3178956972 hasConceptScore W3178956972C154945302 @default.
- W3178956972 hasConceptScore W3178956972C162324750 @default.
- W3178956972 hasConceptScore W3178956972C181199279 @default.
- W3178956972 hasConceptScore W3178956972C183696295 @default.
- W3178956972 hasConceptScore W3178956972C185592680 @default.
- W3178956972 hasConceptScore W3178956972C191908910 @default.
- W3178956972 hasConceptScore W3178956972C2778348673 @default.