Matches in SemOpenAlex for { <https://semopenalex.org/work/W3178993868> ?p ?o ?g. }
- W3178993868 endingPage "5400" @default.
- W3178993868 startingPage "5386" @default.
- W3178993868 abstract "Recent advances in quantum technologies pave the way for noisy intermediate-scale quantum (NISQ) devices, where the quantum approximation optimization algorithm (QAOA) constitutes a promising candidate for demonstrating tangible quantum advantages based on NISQ devices. In this paper, we consider the maximum likelihood (ML) detection problem of binary symbols transmitted over a multiple-input and multiple-output (MIMO) channel, where finding the optimal solution is exponentially hard using classical computers. Here, we apply the QAOA for the ML detection by encoding the problem of interest into a level- <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p$ </tex-math></inline-formula> QAOA circuit having <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$2p$ </tex-math></inline-formula> variational parameters, which can be optimized by classical optimizers. This level- <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p$ </tex-math></inline-formula> QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately in <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$p$ </tex-math></inline-formula> consecutive rounds. More explicitly, we first encode the optimal solution of the ML detection problem into the ground state of a problem Hamiltonian. Using the quantum adiabatic evolution technique, we provide both analytical and numerical results for characterizing the evolution of the eigenvalues of the quantum system used for ML detection. Then, for level-1 QAOA circuits, we derive the analytical expressions of the expectation values of the QAOA and discuss the complexity of the QAOA based ML detector. Explicitly, we evaluate the computational complexity of the classical optimizer used and the storage requirement of simulating the QAOA. Finally, we evaluate the bit error rate (BER) of the QAOA based ML detector and compare it both to the classical ML detector and to the classical minimum mean squared error (MMSE) detector, demonstrating that the QAOA based ML detector is capable of approaching the performance of the classical ML detector." @default.
- W3178993868 created "2021-07-19" @default.
- W3178993868 creator A5041481409 @default.
- W3178993868 creator A5054496135 @default.
- W3178993868 creator A5069325952 @default.
- W3178993868 creator A5091122305 @default.
- W3178993868 date "2022-08-01" @default.
- W3178993868 modified "2023-10-15" @default.
- W3178993868 title "Quantum Approximate Optimization Algorithm Based Maximum Likelihood Detection" @default.
- W3178993868 cites W1997126380 @default.
- W3178993868 cites W2031828766 @default.
- W3178993868 cites W2041432245 @default.
- W3178993868 cites W2061741118 @default.
- W3178993868 cites W2063089586 @default.
- W3178993868 cites W2076476236 @default.
- W3178993868 cites W2084652510 @default.
- W3178993868 cites W2122727488 @default.
- W3178993868 cites W2146481974 @default.
- W3178993868 cites W2161685427 @default.
- W3178993868 cites W2168676717 @default.
- W3178993868 cites W2281950450 @default.
- W3178993868 cites W2526518998 @default.
- W3178993868 cites W2564229214 @default.
- W3178993868 cites W2625750408 @default.
- W3178993868 cites W2754868542 @default.
- W3178993868 cites W2766078569 @default.
- W3178993868 cites W2781738013 @default.
- W3178993868 cites W2783616894 @default.
- W3178993868 cites W2951211905 @default.
- W3178993868 cites W2955897898 @default.
- W3178993868 cites W2959720248 @default.
- W3178993868 cites W2962767882 @default.
- W3178993868 cites W2977042651 @default.
- W3178993868 cites W3017778677 @default.
- W3178993868 cites W3022408567 @default.
- W3178993868 cites W3043220753 @default.
- W3178993868 cites W3080889453 @default.
- W3178993868 cites W3099692638 @default.
- W3178993868 cites W3101122608 @default.
- W3178993868 cites W3102522648 @default.
- W3178993868 cites W3105677655 @default.
- W3178993868 cites W3106282754 @default.
- W3178993868 cites W3129110052 @default.
- W3178993868 cites W4239969927 @default.
- W3178993868 cites W4289684174 @default.
- W3178993868 cites W4303083877 @default.
- W3178993868 doi "https://doi.org/10.1109/tcomm.2022.3185287" @default.
- W3178993868 hasPublicationYear "2022" @default.
- W3178993868 type Work @default.
- W3178993868 sameAs 3178993868 @default.
- W3178993868 citedByCount "2" @default.
- W3178993868 countsByYear W31789938682021 @default.
- W3178993868 countsByYear W31789938682023 @default.
- W3178993868 crossrefType "journal-article" @default.
- W3178993868 hasAuthorship W3178993868A5041481409 @default.
- W3178993868 hasAuthorship W3178993868A5054496135 @default.
- W3178993868 hasAuthorship W3178993868A5069325952 @default.
- W3178993868 hasAuthorship W3178993868A5091122305 @default.
- W3178993868 hasBestOaLocation W31789938682 @default.
- W3178993868 hasConcept C11413529 @default.
- W3178993868 hasConcept C118615104 @default.
- W3178993868 hasConcept C121332964 @default.
- W3178993868 hasConcept C126255220 @default.
- W3178993868 hasConcept C130787639 @default.
- W3178993868 hasConcept C137019171 @default.
- W3178993868 hasConcept C33923547 @default.
- W3178993868 hasConcept C41008148 @default.
- W3178993868 hasConcept C45357846 @default.
- W3178993868 hasConcept C58053490 @default.
- W3178993868 hasConcept C62520636 @default.
- W3178993868 hasConcept C84114770 @default.
- W3178993868 hasConcept C94375191 @default.
- W3178993868 hasConceptScore W3178993868C11413529 @default.
- W3178993868 hasConceptScore W3178993868C118615104 @default.
- W3178993868 hasConceptScore W3178993868C121332964 @default.
- W3178993868 hasConceptScore W3178993868C126255220 @default.
- W3178993868 hasConceptScore W3178993868C130787639 @default.
- W3178993868 hasConceptScore W3178993868C137019171 @default.
- W3178993868 hasConceptScore W3178993868C33923547 @default.
- W3178993868 hasConceptScore W3178993868C41008148 @default.
- W3178993868 hasConceptScore W3178993868C45357846 @default.
- W3178993868 hasConceptScore W3178993868C58053490 @default.
- W3178993868 hasConceptScore W3178993868C62520636 @default.
- W3178993868 hasConceptScore W3178993868C84114770 @default.
- W3178993868 hasConceptScore W3178993868C94375191 @default.
- W3178993868 hasFunder F4320334627 @default.
- W3178993868 hasFunder F4320334678 @default.
- W3178993868 hasIssue "8" @default.
- W3178993868 hasLocation W31789938681 @default.
- W3178993868 hasLocation W31789938682 @default.
- W3178993868 hasLocation W31789938683 @default.
- W3178993868 hasOpenAccess W3178993868 @default.
- W3178993868 hasPrimaryLocation W31789938681 @default.
- W3178993868 hasRelatedWork W1843088339 @default.
- W3178993868 hasRelatedWork W1967578724 @default.
- W3178993868 hasRelatedWork W2011679439 @default.
- W3178993868 hasRelatedWork W2155794351 @default.
- W3178993868 hasRelatedWork W2736891963 @default.