Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179050690> ?p ?o ?g. }
- W3179050690 endingPage "034102" @default.
- W3179050690 startingPage "034102" @default.
- W3179050690 abstract "In this work, we perform Bayesian inference tasks for the chemical master equation in the tensor-train format. The tensor-train approximation has been proven to be very efficient in representing high dimensional data arising from the explicit representation of the chemical master equation solution. An additional advantage of representing the probability mass function in the tensor train format is that parametric dependency can be easily incorporated by introducing a tensor product basis expansion in the parameter space. Time is treated as an additional dimension of the tensor and a linear system is derived to solve the chemical master equation in time. We exemplify the tensor-train method by performing inference tasks such as smoothing and parameter inference using the tensor-train framework. A very high compression ratio is observed for storing the probability mass function of the solution. Since all linear algebra operations are performed in the tensor-train format, a significant reduction of the computational time is observed as well." @default.
- W3179050690 created "2021-07-19" @default.
- W3179050690 creator A5013517565 @default.
- W3179050690 creator A5059936707 @default.
- W3179050690 creator A5070544702 @default.
- W3179050690 creator A5081023733 @default.
- W3179050690 creator A5081469181 @default.
- W3179050690 date "2021-07-21" @default.
- W3179050690 modified "2023-09-30" @default.
- W3179050690 title "Tensor-train approximation of the chemical master equation and its application for parameter inference" @default.
- W3179050690 cites W1490180844 @default.
- W3179050690 cites W1543750907 @default.
- W3179050690 cites W1858056047 @default.
- W3179050690 cites W1954993463 @default.
- W3179050690 cites W1963973528 @default.
- W3179050690 cites W1967859589 @default.
- W3179050690 cites W1968119930 @default.
- W3179050690 cites W1993482030 @default.
- W3179050690 cites W1993862407 @default.
- W3179050690 cites W1995406764 @default.
- W3179050690 cites W1996869553 @default.
- W3179050690 cites W2001518794 @default.
- W3179050690 cites W2014645774 @default.
- W3179050690 cites W2016407890 @default.
- W3179050690 cites W2024165284 @default.
- W3179050690 cites W2031216664 @default.
- W3179050690 cites W2038864107 @default.
- W3179050690 cites W2042321087 @default.
- W3179050690 cites W2060662954 @default.
- W3179050690 cites W2066594542 @default.
- W3179050690 cites W2078734278 @default.
- W3179050690 cites W2081076340 @default.
- W3179050690 cites W2081970839 @default.
- W3179050690 cites W2084774345 @default.
- W3179050690 cites W2085061065 @default.
- W3179050690 cites W2088020133 @default.
- W3179050690 cites W2090107577 @default.
- W3179050690 cites W2122028584 @default.
- W3179050690 cites W2138163236 @default.
- W3179050690 cites W2160791191 @default.
- W3179050690 cites W2161728228 @default.
- W3179050690 cites W2162870748 @default.
- W3179050690 cites W2166864311 @default.
- W3179050690 cites W2500539065 @default.
- W3179050690 cites W2509694617 @default.
- W3179050690 cites W2738769799 @default.
- W3179050690 cites W2811137963 @default.
- W3179050690 cites W2932160358 @default.
- W3179050690 cites W2963363740 @default.
- W3179050690 cites W2963852881 @default.
- W3179050690 cites W3039310193 @default.
- W3179050690 cites W3099171794 @default.
- W3179050690 cites W3099969635 @default.
- W3179050690 cites W3102953404 @default.
- W3179050690 cites W3106372989 @default.
- W3179050690 cites W3123235823 @default.
- W3179050690 doi "https://doi.org/10.1063/5.0045521" @default.
- W3179050690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34293878" @default.
- W3179050690 hasPublicationYear "2021" @default.
- W3179050690 type Work @default.
- W3179050690 sameAs 3179050690 @default.
- W3179050690 citedByCount "5" @default.
- W3179050690 countsByYear W31790506902022 @default.
- W3179050690 countsByYear W31790506902023 @default.
- W3179050690 crossrefType "journal-article" @default.
- W3179050690 hasAuthorship W3179050690A5013517565 @default.
- W3179050690 hasAuthorship W3179050690A5059936707 @default.
- W3179050690 hasAuthorship W3179050690A5070544702 @default.
- W3179050690 hasAuthorship W3179050690A5081023733 @default.
- W3179050690 hasAuthorship W3179050690A5081469181 @default.
- W3179050690 hasBestOaLocation W31790506901 @default.
- W3179050690 hasConcept C105795698 @default.
- W3179050690 hasConcept C11413529 @default.
- W3179050690 hasConcept C121332964 @default.
- W3179050690 hasConcept C124007464 @default.
- W3179050690 hasConcept C128805008 @default.
- W3179050690 hasConcept C154945302 @default.
- W3179050690 hasConcept C155281189 @default.
- W3179050690 hasConcept C202444582 @default.
- W3179050690 hasConcept C2524010 @default.
- W3179050690 hasConcept C2776214188 @default.
- W3179050690 hasConcept C28826006 @default.
- W3179050690 hasConcept C33923547 @default.
- W3179050690 hasConcept C3770464 @default.
- W3179050690 hasConcept C41008148 @default.
- W3179050690 hasConcept C51255310 @default.
- W3179050690 hasConcept C62520636 @default.
- W3179050690 hasConcept C84114770 @default.
- W3179050690 hasConceptScore W3179050690C105795698 @default.
- W3179050690 hasConceptScore W3179050690C11413529 @default.
- W3179050690 hasConceptScore W3179050690C121332964 @default.
- W3179050690 hasConceptScore W3179050690C124007464 @default.
- W3179050690 hasConceptScore W3179050690C128805008 @default.
- W3179050690 hasConceptScore W3179050690C154945302 @default.
- W3179050690 hasConceptScore W3179050690C155281189 @default.
- W3179050690 hasConceptScore W3179050690C202444582 @default.
- W3179050690 hasConceptScore W3179050690C2524010 @default.
- W3179050690 hasConceptScore W3179050690C2776214188 @default.