Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179182882> ?p ?o ?g. }
- W3179182882 endingPage "1720" @default.
- W3179182882 startingPage "1707" @default.
- W3179182882 abstract "No AccessEngineering NotesPose Initialization of Uncooperative Spacecraft by Template Matching with Sparse Point CloudWulong Guo, Weiduo Hu, Chang Liu and Tingting LuWulong Guo https://orcid.org/0000-0002-9315-1750Beihang University, 100191 Beijing, People’s Republic of China*Ph.D., School of Astronautics, Xueyuan Road, Haidian District; .Search for more papers by this author, Weiduo HuBeihang University, 100191 Beijing, People’s Republic of China†Professor, School of Astronautics, Xueyuan Road, Haidian District; .Search for more papers by this author, Chang LiuChinese Academy of Sciences, 518055 Shenzhen, People’s Republic of China‡Associate Professor, Shenzhen Institutes of Advanced Technology; .Search for more papers by this author and Tingting LuChina Academy of Launch Vehicle Technology, 100076 Beijing, People’s Republic of China§Ph.D., Engineer, Research and Development Department; .Search for more papers by this authorPublished Online:7 Jul 2021https://doi.org/10.2514/1.G005042SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Matsuka K., Feldman A. O., Lupu E. S., Chung S.-J. and Hadaegh F. Y., “Decentralized Formation Pose Estimation for Spacecraft Swarms,” Advances in Space Research, Vol. 67, No. 11, 2020, pp. 3527–3545. https://doi.org/10.1016/j.asr.2020.06.016 Google Scholar[2] Flores-Abad A., Ma O., Pham K. and Ulrich S., “A Review of Space Robotics Technologies for On-Orbit Servicing,” Progress in Aerospace Sciences, Vol. 68, July 2014, pp. 1–26. https://doi.org/10.1016/j.paerosci.2014.03.002 CrossrefGoogle Scholar[3] Bonnal C., Ruault J.-M. and Desjean M.-C., “Active Debris Removal: Recent Progress and Current Trends,” Acta Astronautica, Vol. 85, April 2013, pp. 51–60. https://doi.org/10.1016/j.actaastro.2012.11.009 CrossrefGoogle Scholar[4] Kawano I., Mokuno M., Kasai T. and Suzuki T., “Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite-VII,” Journal of Spacecraft and Rockets, Vol. 38, No. 1, 2001, pp. 105–111. https://doi.org/10.2514/2.3661 LinkGoogle Scholar[5] Howard R. T. and Bryan T. C., “DART AVGS Flight Results,” Sensors and Systems for Space Applications, Vol. 6555, International Society for Optics and Photonics, Soc. of Photo-Optical Instrumentation Engineers, Bellingham, WA, 2007, pp. 162–171. https://doi.org/10.1117/12.720242 Google Scholar[6] Tzschichholz T., Boge T. and Schilling K., “Relative Pose Estimation of Satellites Using PMD-/CCD-Sensor Data Fusion,” Acta Astronautica, Vol. 109, April 2015, pp. 25–33. https://doi.org/10.1016/j.actaastro.2014.12.010 Google Scholar[7] Shi J.-F., Ulrich S. and Ruel S., “Spacecraft Pose Estimation Using Principal Component Analysis and a Monocular Camera,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2017-1034, 2017. https://doi.org/10.2514/6.2017-1034 LinkGoogle Scholar[8] Kanani K., Petit A., Marchand E., Chabot T. and Gerber B., “Vision Based Navigation for Debris Removal Missions,” 63rd International Astronautical Congress, IAC, hal-00750610, Vol. 4, Naples, Italy, April 2012. Google Scholar[9] Reinbacher C., Ruther M. and Bischof H., “Pose Estimation of Known Objects by Efficient Silhouette Matching,” 2010 20th International Conference on Pattern Recognition, Inst. of Electrical and Electronics Engineers, New York, 2010, pp. 1080–1083. https://doi.org/10.1109/icpr.2010.270 Google Scholar[10] Opromolla R., Fasano G., Rufino G. and Grassi M., “Uncooperative Pose Estimation with a LIDAR-Based System,” Acta Astronautica, Vol. 110, May 2015, pp. 287–297. https://doi.org/10.1016/j.actaastro.2014.11.003 CrossrefGoogle Scholar[11] Opromolla R., Fasano G., Rufino G. and Grassi M., “Pose Estimation for Spacecraft Relative Navigation Using Model-Based Algorithms,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 1, 2017, pp. 431–447. https://doi.org/10.1109/TAES.2017.2650785 CrossrefGoogle Scholar[12] Opromolla R., Fasano G., Rufino G. and Grassi M., “A Model-Based 3D Template Matching Technique for Pose Acquisition of an Uncooperative Space Object,” Sensors (Basel), Vol. 15, No. 3, 2015, pp. 6360–6382. https://doi.org/10.3390/s150306360 Google Scholar[13] Liu C. and Hu W., “Relative Pose Estimation for Cylinder-Shaped Spacecrafts Using Single Image,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 4, 2014, pp. 3036–3056. https://doi.org/10.1109/TAES.2014.120757. CrossrefGoogle Scholar[14] Liu C. and Hu W., “Real-Time Geometric Fitting and Pose Estimation for Surface of Revolution,” Pattern Recognition, Vol. 85, Jan. 2019, pp. 90–108. https://doi.org/10.1016/j.patcog.2018.08.002 Google Scholar[15] Lu T., Hu W., Liu C. and Yang D., “Relative Pose Estimation of a Lander Using Crater Detection and Matching,” Optical Engineering, Vol. 55, No. 2, 2016, pp. 1–24. https://doi.org/10.1117/1.OE.55.2.023102 Google Scholar[16] D’Amico S., Benn M. and Jørgensen J. L., “Pose Estimation of an Uncooperative Spacecraft from Actual Space Imagery,” International Journal of Space Science and Engineering, Vol. 2, No. 2, 2014, pp. 171–189. https://doi.org/10.1504/IJSPACESE.2014.060600 CrossrefGoogle Scholar[17] Taati B. and Greenspan M., “Local Shape Descriptor Selection for Object Recognition in Range Data,” Computer Vision and Image Understanding, Vol. 115, No. 5, 2011, pp. 681–694. https://doi.org/10.1016/j.cviu.2010.11.021 Google Scholar[18] Yin F., Chou W., Wu Y., Yang G. and Xu S., “Sparse Unorganized Point Cloud Based Relative Pose Estimation for Uncooperative Space Target,” Sensors, Vol. 18, No. 4, 2018, p. 1009. https://doi.org/10.3390/s18041009 CrossrefGoogle Scholar[19] Ruel S., Luu T. and Berube A., “Space Shuttle Testing of the TriDAR 3D Rendezvous and Docking Sensor,” Journal of Field Robotics, Vol. 29, No. 4, 2012, pp. 535–553. https://doi.org/10.1002/rob.20420 CrossrefGoogle Scholar[20] He Y., Liang B., He J. and Li S., “Non-Cooperative Spacecraft Pose Tracking Based on Point Cloud Feature,” Acta Astronautica, Vol. 139, Oct. 2017, pp. 213–221. https://doi.org/10.1016/j.actaastro.2017.06.021 CrossrefGoogle Scholar[21] Gómez Martínez H., Giorgi G. and Eissfeller B., “Pose Estimation and Tracking of Non-Cooperative Rocket Bodies Using Time-of-Flight Cameras,” Acta Astronautica, Vol. 139, Oct. 2017, pp. 165–175. https://doi.org/10.1016/j.actaastro.2017.07.002 CrossrefGoogle Scholar[22] Ventura J., Fleischner A. and Walter U., “Pose Tracking of a Noncooperative Spacecraft During Docking Maneuvers Using a Time-of-Flight Sensor,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2016-0875, 2016. https://doi.org/10.2514/6.2016-0875 LinkGoogle Scholar[23] Jaccard P., “The Distribution of the Flora in the Alpine Zone.1,” New Phytologist, Vol. 11, No. 2, 1912, pp. 37–50. https://doi.org/10.1111/j.1469-8137.1912.tb05611.x CrossrefGoogle Scholar[24] Besl P. J. and McKay N. D., “A Method for Registration of 3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 2, 1992, pp. 239–256. https://doi.org/10.1109/34.121791 CrossrefGoogle Scholar[25] Ho C.-C. J. and Mcclamroch N. H., “Automatic Spacecraft Docking Using Computer Vision-Based Guidance and Control Techniques,” Journal of Guidance, Control, and Dynamics, Vol. 16, No. 2, 1993, pp. 281–288. https://doi.org/10.2514/3.21001 LinkGoogle Scholar[26] Mokuno M. and Kawano I., “In-Orbit Demonstration of an Optical Navigation System for Autonomous Rendezvous Docking,” Journal of Spacecraft and Rockets, Vol. 48, No. 6, 2011, pp. 1046–1054. https://doi.org/10.2514/1.52193 LinkGoogle Scholar[27] Christian J. A., Robinson S. B., D’Souza C. N. and Ruiz J. P., “Cooperative Relative Navigation of Spacecraft Using Flash Light Detection and Ranging Sensors,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 2, 2014, pp. 452–465. https://doi.org/10.2514/1.61234 LinkGoogle Scholar[28] Delabie T., Schutter J. D. and Vandenbussche B., “Highly Efficient Attitude-Estimation Algorithm for Star Trackers Using Optimal Image Matching,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 6, 2013, pp. 1672–1680. https://doi.org/10.2514/1.61082 LinkGoogle Scholar[29] Kelsey J. M., Byrne J., Cosgrove M., Seereeram S. and Mehra R. K., “Vision-Based Relative Pose Estimation for Autonomous Rendezvous and Docking,” 2006 IEEE Aerospace Conference, IEEE, New York, 2006, p. 20. https://doi.org/10.1109/AERO.2006.1655916 Google Scholar[30] Sharma S. and D’Amico S., “Comparative Assessment of Techniques for Initial Pose Estimation Using Monocular Vision,” Acta Astronautica, Vol. 123, June 2016, pp. 435–445. https://doi.org/10.1016/j.actaastro.2015.12.032 CrossrefGoogle Scholar[31] Fasano G., Grassi M. and Accardo D., “A Stereo-Vision Based System for Autonomous Navigation of an In-Orbit Servicing Platform,” AIAA [email protected] Conference, AIAA Paper 2009-1934, 2009. https://doi.org/10.2514/6.2009-1934 LinkGoogle Scholar[32] Naasz B. J., Burns R. D., Queen S. Z., Van Eepoel J., Hannah J. and Skelton E., “The HST SM4 Relative Navigation Sensor System: Overview and Preliminary Testing Results from the Flight Robotics Lab,” Journal of the Astronautical Sciences, Vol. 57, No. 1, 2009, pp. 457–483. https://doi.org/10.1007/BF03321512 Google Scholar[33] Naasz B., Van Eepoel J. and Queen S., “Flight Results from the HST SM4 Relative Navigation Sensor System,” 33rd Annual AAS Guidance and Control Conference, American Astronautical Soc. Paper 2010-086, Breckenridge, CO, Jan. 2010. Google Scholar[34] Fischler M. A. and Bolles R. C., “Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography,” Readings in Computer Vision, edited by Fischler M. A. and Firschein O., Morgan Kaufmann, San Francisco, 1987, pp. 726–740. https://doi.org/10.1016/B978-0-08-051581-6.50070-2 CrossrefGoogle Scholar[35] Gold S. and Rangarajan A., “A Graduated Assignment Algorithm for Graph Matching,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, No. 4, 1996, pp. 377–388. https://doi.org/10.1109/34.491619 Google Scholar[36] Gold S., Rangarajan A., Lu C.-P., Pappu S. and Mjolsness E., “New Algorithms for 2D and 3D Point Matching: Pose Estimation and Correspondence,” Pattern Recognition, Vol. 31, No. 8, 1998, pp. 1019–1031. https://doi.org/10.1016/S0031-3203(98)80010-1 CrossrefGoogle Scholar[37] Guo Y., Sohel F., Bennamoun M., Lu M. and Wan J., “Rotational Projection Statistics for 3D Local Surface Description and Object Recognition,” International Journal of Computer Vision, Vol. 105, No. 1, 2013, pp. 63–86. https://doi.org/10.1007/s11263-013-0627-y Google Scholar[38] Salti S., Tombari F. and Di Stefano L., “SHOT: Unique Signatures of Histograms for Surface and Texture Description,” Computer Vision and Image Understanding, Vol. 125, Aug. 2014, pp. 251–264. https://doi.org/10.1016/j.cviu.2014.04.011 Google Scholar[39] Guo Y., Bennamoun M., Sohel F., Wan J. and Kwok N. M., “A Comprehensive Performance Evaluation of 3D Local Feature Descriptors,” International Journal of Computer Vision, Vol. 116, No. 1, 2016, pp. 66–89. https://doi.org/10.1007/s11263-015-0824-y CrossrefGoogle Scholar[40] Guo W., Hu W., Liu C. and Lu T., “3D Object Recognition from Cluttered and Occluded Scenes with a Compact Local Feature,” Machine Vision and Applications, Vol. 30, No. 4, 2019, pp. 763–783. https://doi.org/10.1007/s00138-019-01027-7 Google Scholar[41] Rusu R. B., Blodow N., Marton Z. C. and Beetz M., “Aligning Point Cloud Views Using Persistent Feature Histograms,” 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, New York, 2008, pp. 3384–3391. https://doi.org/10.1109/IROS.2008.4650967 Google Scholar[42] Rusu R. B., Blodow N. and Beetz M., “Fast Point Feature Histograms (FPFH) for 3D registration,” 2009 IEEE International Conference on Robotics and Automation, IEEE, New York, 2009, pp. 3212–3217. https://doi.org/10.1109/ROBOT.2009.5152473. Google Scholar[43] Woods J. O. and Christian J. A., “LIDAR-Based Relative Navigation with Respect to Non-Cooperative Objects,” Acta Astronautica, Vol. 126, Sept. 2016, pp. 298–311. https://doi.org/10.1016/j.actaastro.2016.05.007 CrossrefGoogle Scholar[44] Klionovska K. and Benninghoff H., “Initial Pose Estimation Using PMD Sensor During the Rendezvous Phase in On-Orbit Servicing Missions,” 27th AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Soc. Paper 2017-263, Breckenridge, CO, Jan. 2010. Google Scholar[45] Ruel S., Luu T., Anctil M. and Gagnon S., “Target Localization from 3D Data for On-Orbit Autonomous Rendezvous and Docking,” 2008 IEEE Aerospace Conference, IEEE, New York, 2008, pp. 1–11. https://doi.org/10.1109/AERO.2008.4526516 Google Scholar[46] English C., Zhu S., Smith C., Ruel S. and Christie I., “TriDAR: A Hybrid Sensor for Exploiting the Complimentary Nature of Triangulation and LIDAR Technologies,” 8th International Symposium on. Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS), European Space Agency, 4_english_9a, München, Germany, Sept. 2005. Google Scholar[47] Ruel S., Luu T. and Berube A., “On-Orbit Testing of Target-Less TriDAR 3D Rendezvous and Docking Sensor,” 10th International Symposium on Artificial Intelligence, Robotics, and Automation in Space, Japanese Aerospace Exploration Agency Paper 004-2775, Sapporo, Japan, Aug. 2010. Google Scholar[48] Liu L., Zhao G. and Bo Y., “Point Cloud Based Relative Pose Estimation of a Satellite in Close Range,” Sensors, Vol. 16, No. 6, 2016, p. 824. https://doi.org/10.3390/s16060824 CrossrefGoogle Scholar[49] Yang J., Li H., Campbell D. and Jia Y., “Go-ICP: A Globally Optimal Solution to 3D ICP Point-Set Registration,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 38, No. 11, 2016, pp. 2241–2254. https://doi.org/10.1109/TPAMI.2015.2513405 Google Scholar[50] Sharma S. and D’Amico S., “Neural Network-Based Pose Estimation for Noncooperative Spacecraft Rendezvous,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 56, No. 6, 2020, pp. 4638–4658. https://doi.org/10.1109/TAES.2020.2999148 CrossrefGoogle Scholar[51] Kechagias-Stamatis O., Aouf N., Dubanchet V. and Richardson M., “DeepLO: Multi-Projection Deep LIDAR Odometry for Space Orbital Robotics Rendezvous Relative Navigation,” Acta Astronautica, Vol. 177, Dec. 2020, pp. 270–285. https://doi.org/10.1016/j.actaastro.2020.07.034 CrossrefGoogle Scholar[52] Opromolla R., Fasano G., Rufino G. and Grassi M., “A Review of Cooperative and Uncooperative Spacecraft Pose Determination Techniques for Close-Proximity Operations,” Progress in Aerospace Sciences, Vol. 93, Aug. 2017, pp. 53–72. https://doi.org/10.1016/j.paerosci.2017.07.001 CrossrefGoogle Scholar[53] Dietrich A. B. and McMahon J. W., “Filter Initialization with Three-Dimensional Lidar Images in Proximity to Small Bodies,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 2, 2020, pp. 310–318. https://doi.org/10.2514/1.G004468 LinkGoogle Scholar[54] O’Rourke J., Computational Geometry in C, Cambridge Univ. Press, Cambridge, 1998, pp. 1–51. Google Scholar[55] Hu M.-K., “Visual Pattern Recognition by Moment Invariants,” IRE Transactions on Information Theory, Vol. 8, No. 2, 1962, pp. 179–187. https://doi.org/10.1109/TIT.1962.1057692 Google Scholar[56] Zhong Y., “Intrinsic Shape Signatures: A Shape Descriptor for 3D Object Recognition,” 2009 IEEE 12th International Conference on Computer Vision Workshops (ICCV Workshops), IEEE, New York, 2009, pp. 689–696. https://doi.org/10.1109/ICCVW.2009.5457637 Google Scholar[57] Tjaden H., Schwanecke U. and Schömer E., “Real-Time Monocular Pose Estimation of 3D Objects Using Temporally Consistent Local Color Histograms,” 2017 IEEE International Conference on Computer Vision (ICCV), IEEE, New York, 2017, pp. 124–132. https://doi.org/10.1109/ICCV.2017.23 Google Scholar[58] Bentley J. L., “Multidimensional Binary Search Trees Used for Associative Searching,” Communications of the ACM, Vol. 18, No. 9, 1975, pp. 509–517. https://doi.org/10.1145/361002.361007 CrossrefGoogle Scholar[59] “NASA 3D Resources,” 2019, https://nasa3d.arc.nasa.gov/. Google Scholar[60] Vijayan V., “Ray Casting for Deformable Triangular 3D Meshes,” 2021, https://www.mathworks.com/matlabcentral/fileexchange/41504-ray-casting-for-deformable-triangular-3d-meshes. Google Scholar[61] Blais F., “Review of 20 Years of Range Sensor Development,” Journal of Electronic Imaging, Vol. 13, No. 1, 2004, pp. 231–240. https://doi.org/10.1117/1.1631921 Google Scholar Previous article FiguresReferencesRelatedDetails What's Popular Volume 44, Number 9September 2021 CrossmarkInformationCopyright © 2021 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the eISSN 1533-3884 to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAlgorithms and Data StructuresArtificial IntelligenceCommunications SatelliteComputer GraphicsComputer Programming and LanguageComputer VisionComputing and InformaticsComputing, Information, and CommunicationData ScienceSatellitesSpace Systems and VehiclesSpacecraft DesignSpacecraftsUncrewed Spacecraft KeywordsSpacecraftsLIDARTracking and Data Relay SatellitesEuler AnglesOnboard SensorsMatching AlgorithmMATLABTarget SpacecraftSpace MissionsSix Degree of FreedomAcknowledgmentsThis work was supported by National Natural Science Foundation of China (Grant No. 61703017). The authors thank the owners of the spacecraft model used in this work for making those datasets available in NASA 3D resources.PDF Received20 December 2019Accepted10 May 2021Published online7 July 2021" @default.
- W3179182882 created "2021-07-19" @default.
- W3179182882 creator A5015512373 @default.
- W3179182882 creator A5022256556 @default.
- W3179182882 creator A5041248542 @default.
- W3179182882 creator A5082354263 @default.
- W3179182882 date "2021-09-01" @default.
- W3179182882 modified "2023-09-25" @default.
- W3179182882 title "Pose Initialization of Uncooperative Spacecraft by Template Matching with Sparse Point Cloud" @default.
- W3179182882 cites W1548836129 @default.
- W3179182882 cites W1963588238 @default.
- W3179182882 cites W1972485825 @default.
- W3179182882 cites W2000020278 @default.
- W3179182882 cites W2000640261 @default.
- W3179182882 cites W2001350614 @default.
- W3179182882 cites W2005606056 @default.
- W3179182882 cites W2006072883 @default.
- W3179182882 cites W2024039087 @default.
- W3179182882 cites W2039708910 @default.
- W3179182882 cites W2049981393 @default.
- W3179182882 cites W2064607980 @default.
- W3179182882 cites W2065606305 @default.
- W3179182882 cites W2068188043 @default.
- W3179182882 cites W2090308161 @default.
- W3179182882 cites W2092564207 @default.
- W3179182882 cites W2099121015 @default.
- W3179182882 cites W2123402141 @default.
- W3179182882 cites W2159498975 @default.
- W3179182882 cites W2159537329 @default.
- W3179182882 cites W2161958083 @default.
- W3179182882 cites W2165558283 @default.
- W3179182882 cites W2291821649 @default.
- W3179182882 cites W2320210754 @default.
- W3179182882 cites W2325949528 @default.
- W3179182882 cites W2330669299 @default.
- W3179182882 cites W2344109021 @default.
- W3179182882 cites W2385705413 @default.
- W3179182882 cites W2419676917 @default.
- W3179182882 cites W2568139125 @default.
- W3179182882 cites W2570767403 @default.
- W3179182882 cites W2594388292 @default.
- W3179182882 cites W2656918239 @default.
- W3179182882 cites W2728760287 @default.
- W3179182882 cites W2739206226 @default.
- W3179182882 cites W2794719813 @default.
- W3179182882 cites W2886348482 @default.
- W3179182882 cites W2940374047 @default.
- W3179182882 cites W2998153017 @default.
- W3179182882 cites W3020867216 @default.
- W3179182882 cites W3033485479 @default.
- W3179182882 cites W3035071962 @default.
- W3179182882 cites W3046035196 @default.
- W3179182882 cites W3101921002 @default.
- W3179182882 cites W4243493583 @default.
- W3179182882 doi "https://doi.org/10.2514/1.g005042" @default.
- W3179182882 hasPublicationYear "2021" @default.
- W3179182882 type Work @default.
- W3179182882 sameAs 3179182882 @default.
- W3179182882 citedByCount "5" @default.
- W3179182882 countsByYear W31791828822022 @default.
- W3179182882 countsByYear W31791828822023 @default.
- W3179182882 crossrefType "journal-article" @default.
- W3179182882 hasAuthorship W3179182882A5015512373 @default.
- W3179182882 hasAuthorship W3179182882A5022256556 @default.
- W3179182882 hasAuthorship W3179182882A5041248542 @default.
- W3179182882 hasAuthorship W3179182882A5082354263 @default.
- W3179182882 hasConcept C105795698 @default.
- W3179182882 hasConcept C114466953 @default.
- W3179182882 hasConcept C127413603 @default.
- W3179182882 hasConcept C131979681 @default.
- W3179182882 hasConcept C146978453 @default.
- W3179182882 hasConcept C154945302 @default.
- W3179182882 hasConcept C165064840 @default.
- W3179182882 hasConcept C199360897 @default.
- W3179182882 hasConcept C29829512 @default.
- W3179182882 hasConcept C33923547 @default.
- W3179182882 hasConcept C41008148 @default.
- W3179182882 hasConceptScore W3179182882C105795698 @default.
- W3179182882 hasConceptScore W3179182882C114466953 @default.
- W3179182882 hasConceptScore W3179182882C127413603 @default.
- W3179182882 hasConceptScore W3179182882C131979681 @default.
- W3179182882 hasConceptScore W3179182882C146978453 @default.
- W3179182882 hasConceptScore W3179182882C154945302 @default.
- W3179182882 hasConceptScore W3179182882C165064840 @default.
- W3179182882 hasConceptScore W3179182882C199360897 @default.
- W3179182882 hasConceptScore W3179182882C29829512 @default.
- W3179182882 hasConceptScore W3179182882C33923547 @default.
- W3179182882 hasConceptScore W3179182882C41008148 @default.
- W3179182882 hasFunder F4320321001 @default.
- W3179182882 hasIssue "9" @default.
- W3179182882 hasLocation W31791828821 @default.
- W3179182882 hasOpenAccess W3179182882 @default.
- W3179182882 hasPrimaryLocation W31791828821 @default.
- W3179182882 hasRelatedWork W1966945977 @default.
- W3179182882 hasRelatedWork W2046610921 @default.
- W3179182882 hasRelatedWork W2064021740 @default.
- W3179182882 hasRelatedWork W2064999371 @default.
- W3179182882 hasRelatedWork W2114743794 @default.