Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179293854> ?p ?o ?g. }
- W3179293854 endingPage "55" @default.
- W3179293854 startingPage "44" @default.
- W3179293854 abstract "Machine Learning (ML) has become a ubiquitous tool for predicting and classifying data and has found application in several problem domains, including Software Development (SD). This paper reviews the literature between 2000 and 2019 on the use the learning models that have been employed for programming effort estimation, predicting risks and identifying and detecting defects. This work is meant to serve as a starting point for practitioners willing to add ML to their software development toolbox. It categorises recent literature and identifies trends and limitations. The survey shows as some authors have agreed that industrial applications of ML for SD have not been as popular as the reported results would suggest. The conducted investigation shows that, despite having promising findings for a variety of SD tasks, most of the studies yield vague results, in part due to the lack of comprehensive datasets in this problem domain. The paper ends with concluding remarks and suggestions for future research." @default.
- W3179293854 created "2021-07-19" @default.
- W3179293854 creator A5004944009 @default.
- W3179293854 creator A5011632105 @default.
- W3179293854 creator A5032714246 @default.
- W3179293854 creator A5039965176 @default.
- W3179293854 creator A5050027209 @default.
- W3179293854 creator A5050631243 @default.
- W3179293854 creator A5054401688 @default.
- W3179293854 creator A5075175655 @default.
- W3179293854 creator A5079212590 @default.
- W3179293854 date "2021-01-01" @default.
- W3179293854 modified "2023-09-23" @default.
- W3179293854 title "Machine Learning and Value Generation in Software Development: A Survey" @default.
- W3179293854 cites W1963925578 @default.
- W3179293854 cites W1976329014 @default.
- W3179293854 cites W1978674218 @default.
- W3179293854 cites W1980851144 @default.
- W3179293854 cites W1989746184 @default.
- W3179293854 cites W1999117413 @default.
- W3179293854 cites W2020558981 @default.
- W3179293854 cites W2026969932 @default.
- W3179293854 cites W2028070629 @default.
- W3179293854 cites W2032285834 @default.
- W3179293854 cites W2033147753 @default.
- W3179293854 cites W2037664399 @default.
- W3179293854 cites W2044076868 @default.
- W3179293854 cites W2062020999 @default.
- W3179293854 cites W2064067512 @default.
- W3179293854 cites W2065723159 @default.
- W3179293854 cites W2066452975 @default.
- W3179293854 cites W2075848956 @default.
- W3179293854 cites W2108610041 @default.
- W3179293854 cites W2112032657 @default.
- W3179293854 cites W2114191341 @default.
- W3179293854 cites W2133442842 @default.
- W3179293854 cites W2139357103 @default.
- W3179293854 cites W2150385388 @default.
- W3179293854 cites W2151005528 @default.
- W3179293854 cites W2170652960 @default.
- W3179293854 cites W2512697187 @default.
- W3179293854 cites W2532932905 @default.
- W3179293854 cites W2580355192 @default.
- W3179293854 cites W2585138248 @default.
- W3179293854 cites W2900231206 @default.
- W3179293854 cites W2963318202 @default.
- W3179293854 cites W2963828367 @default.
- W3179293854 cites W2999598716 @default.
- W3179293854 cites W3004145378 @default.
- W3179293854 cites W3143822685 @default.
- W3179293854 cites W4238574518 @default.
- W3179293854 cites W4243890649 @default.
- W3179293854 doi "https://doi.org/10.1007/978-3-030-71472-7_3" @default.
- W3179293854 hasPublicationYear "2021" @default.
- W3179293854 type Work @default.
- W3179293854 sameAs 3179293854 @default.
- W3179293854 citedByCount "1" @default.
- W3179293854 countsByYear W31792938542021 @default.
- W3179293854 crossrefType "book-chapter" @default.
- W3179293854 hasAuthorship W3179293854A5004944009 @default.
- W3179293854 hasAuthorship W3179293854A5011632105 @default.
- W3179293854 hasAuthorship W3179293854A5032714246 @default.
- W3179293854 hasAuthorship W3179293854A5039965176 @default.
- W3179293854 hasAuthorship W3179293854A5050027209 @default.
- W3179293854 hasAuthorship W3179293854A5050631243 @default.
- W3179293854 hasAuthorship W3179293854A5054401688 @default.
- W3179293854 hasAuthorship W3179293854A5075175655 @default.
- W3179293854 hasAuthorship W3179293854A5079212590 @default.
- W3179293854 hasBestOaLocation W31792938542 @default.
- W3179293854 hasConcept C115903868 @default.
- W3179293854 hasConcept C119857082 @default.
- W3179293854 hasConcept C134306372 @default.
- W3179293854 hasConcept C136197465 @default.
- W3179293854 hasConcept C154945302 @default.
- W3179293854 hasConcept C199360897 @default.
- W3179293854 hasConcept C2522767166 @default.
- W3179293854 hasConcept C2524010 @default.
- W3179293854 hasConcept C2776291640 @default.
- W3179293854 hasConcept C2777655017 @default.
- W3179293854 hasConcept C2777904410 @default.
- W3179293854 hasConcept C28719098 @default.
- W3179293854 hasConcept C33923547 @default.
- W3179293854 hasConcept C36503486 @default.
- W3179293854 hasConcept C41008148 @default.
- W3179293854 hasConcept C529173508 @default.
- W3179293854 hasConceptScore W3179293854C115903868 @default.
- W3179293854 hasConceptScore W3179293854C119857082 @default.
- W3179293854 hasConceptScore W3179293854C134306372 @default.
- W3179293854 hasConceptScore W3179293854C136197465 @default.
- W3179293854 hasConceptScore W3179293854C154945302 @default.
- W3179293854 hasConceptScore W3179293854C199360897 @default.
- W3179293854 hasConceptScore W3179293854C2522767166 @default.
- W3179293854 hasConceptScore W3179293854C2524010 @default.
- W3179293854 hasConceptScore W3179293854C2776291640 @default.
- W3179293854 hasConceptScore W3179293854C2777655017 @default.
- W3179293854 hasConceptScore W3179293854C2777904410 @default.
- W3179293854 hasConceptScore W3179293854C28719098 @default.
- W3179293854 hasConceptScore W3179293854C33923547 @default.