Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179310586> ?p ?o ?g. }
- W3179310586 endingPage "124081" @default.
- W3179310586 startingPage "124081" @default.
- W3179310586 abstract "This paper presents an innovative development process of a Deep Neural Network model to predict the compressive strength of rubber concrete. To this goal, a rubber concrete database is carefully constructed, incorporating a set of binder, aggregate, and other related concrete variables as input parameters, whereas the compressive strength is considered as output. The development of the DNN model includes extensive analysis of the number of hidden layers and the neurons in each layer, combining with a statistical investigation of the models' prediction outputs. The results show that the DNN model outperforms other neural network structures according to several well-known performance indices, such as coefficient of determination, root mean square error, and mean absolute error. The proposed DNN model also exhibits higher prediction accuracy than previously published results, using different machine learning algorithms in the literature. A sensitivity analysis using partial dependence plots is performed within the DNN algorithm in order to achieve an in-depth examination of the influence of each single input variable on the predicted compressive strength of rubber concrete. Finally, the possibility of using other input variables is given to pave the way for applications in regular, high strength, or light-weight foamed concrete containing rubber particles." @default.
- W3179310586 created "2021-07-19" @default.
- W3179310586 creator A5009069223 @default.
- W3179310586 creator A5047823623 @default.
- W3179310586 creator A5059172603 @default.
- W3179310586 creator A5069214273 @default.
- W3179310586 date "2021-09-01" @default.
- W3179310586 modified "2023-10-14" @default.
- W3179310586 title "Development of deep neural network model to predict the compressive strength of rubber concrete" @default.
- W3179310586 cites W1678356000 @default.
- W3179310586 cites W1963567710 @default.
- W3179310586 cites W1968367363 @default.
- W3179310586 cites W1971259134 @default.
- W3179310586 cites W1974336375 @default.
- W3179310586 cites W1975910236 @default.
- W3179310586 cites W1980390276 @default.
- W3179310586 cites W1987273663 @default.
- W3179310586 cites W1988132580 @default.
- W3179310586 cites W1988600871 @default.
- W3179310586 cites W1996029664 @default.
- W3179310586 cites W1997393788 @default.
- W3179310586 cites W1997828822 @default.
- W3179310586 cites W2001705326 @default.
- W3179310586 cites W2010475827 @default.
- W3179310586 cites W2016000961 @default.
- W3179310586 cites W2017813671 @default.
- W3179310586 cites W2025951681 @default.
- W3179310586 cites W2029354778 @default.
- W3179310586 cites W2031907192 @default.
- W3179310586 cites W2037013797 @default.
- W3179310586 cites W2038720550 @default.
- W3179310586 cites W2039240145 @default.
- W3179310586 cites W2042276455 @default.
- W3179310586 cites W2047142751 @default.
- W3179310586 cites W2049459788 @default.
- W3179310586 cites W2050133572 @default.
- W3179310586 cites W2051228973 @default.
- W3179310586 cites W2052095167 @default.
- W3179310586 cites W2056707911 @default.
- W3179310586 cites W2057289968 @default.
- W3179310586 cites W2058000036 @default.
- W3179310586 cites W2059558860 @default.
- W3179310586 cites W2064703303 @default.
- W3179310586 cites W2070828680 @default.
- W3179310586 cites W2078783970 @default.
- W3179310586 cites W2079020577 @default.
- W3179310586 cites W2079572060 @default.
- W3179310586 cites W2087425984 @default.
- W3179310586 cites W2091432990 @default.
- W3179310586 cites W2125762458 @default.
- W3179310586 cites W2137356002 @default.
- W3179310586 cites W2150275984 @default.
- W3179310586 cites W2184289165 @default.
- W3179310586 cites W2294668732 @default.
- W3179310586 cites W2508496315 @default.
- W3179310586 cites W2553852618 @default.
- W3179310586 cites W2556156268 @default.
- W3179310586 cites W2614394570 @default.
- W3179310586 cites W2764330403 @default.
- W3179310586 cites W2765519829 @default.
- W3179310586 cites W2799792428 @default.
- W3179310586 cites W2908694333 @default.
- W3179310586 cites W2911508326 @default.
- W3179310586 cites W2921499992 @default.
- W3179310586 cites W2922633297 @default.
- W3179310586 cites W2923370583 @default.
- W3179310586 cites W2943863934 @default.
- W3179310586 cites W2946194644 @default.
- W3179310586 cites W2971628638 @default.
- W3179310586 cites W2972621917 @default.
- W3179310586 cites W2987946516 @default.
- W3179310586 cites W2998463744 @default.
- W3179310586 cites W3001229584 @default.
- W3179310586 cites W3003633850 @default.
- W3179310586 cites W3007270451 @default.
- W3179310586 cites W3009425669 @default.
- W3179310586 cites W3025029809 @default.
- W3179310586 cites W4251295437 @default.
- W3179310586 cites W4376542644 @default.
- W3179310586 doi "https://doi.org/10.1016/j.conbuildmat.2021.124081" @default.
- W3179310586 hasPublicationYear "2021" @default.
- W3179310586 type Work @default.
- W3179310586 sameAs 3179310586 @default.
- W3179310586 citedByCount "67" @default.
- W3179310586 countsByYear W31793105862021 @default.
- W3179310586 countsByYear W31793105862022 @default.
- W3179310586 countsByYear W31793105862023 @default.
- W3179310586 crossrefType "journal-article" @default.
- W3179310586 hasAuthorship W3179310586A5009069223 @default.
- W3179310586 hasAuthorship W3179310586A5047823623 @default.
- W3179310586 hasAuthorship W3179310586A5059172603 @default.
- W3179310586 hasAuthorship W3179310586A5069214273 @default.
- W3179310586 hasConcept C105795698 @default.
- W3179310586 hasConcept C11413529 @default.
- W3179310586 hasConcept C119857082 @default.
- W3179310586 hasConcept C122383733 @default.
- W3179310586 hasConcept C127413603 @default.
- W3179310586 hasConcept C128990827 @default.