Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179317887> ?p ?o ?g. }
- W3179317887 endingPage "291" @default.
- W3179317887 startingPage "243" @default.
- W3179317887 abstract "We prove that ω-languages of (non-deterministic) Petri nets and ω-languages of (nondeterministic) Turing machines have the same topological complexity: the Borel and Wadge hierarchies of the class of ω-languages of (non-deterministic) Petri nets are equal to the Borel and Wadge hierarchies of the class of ω-languages of (non-deterministic) Turing machines. We also show that it is highly undecidable to determine the topological complexity of a Petri net ω-language. Moreover, we infer from the proofs of the above results that the equivalence and the inclusion problems for ω-languages of Petri nets are ∏21-complete, hence also highly undecidable. Additionally, we show that the situation is quite the opposite when considering unambiguous Petri nets, which have the semantic property that at most one accepting run exists on every input. We provide a procedure of determinising them into deterministic Muller counter machines with counter copying. As a consequence, we entail that the ω-languages recognisable by unambiguous Petri nets are △30 sets." @default.
- W3179317887 created "2021-07-19" @default.
- W3179317887 creator A5057731005 @default.
- W3179317887 creator A5073562431 @default.
- W3179317887 date "2022-01-10" @default.
- W3179317887 modified "2023-10-05" @default.
- W3179317887 title "On the Expressive Power of Non-deterministic and Unambiguous Petri Nets over Infinite Words" @default.
- W3179317887 cites W117768600 @default.
- W3179317887 cites W1506645925 @default.
- W3179317887 cites W1539382740 @default.
- W3179317887 cites W1555991696 @default.
- W3179317887 cites W1560960962 @default.
- W3179317887 cites W1563982778 @default.
- W3179317887 cites W1577150716 @default.
- W3179317887 cites W1608728926 @default.
- W3179317887 cites W1621948069 @default.
- W3179317887 cites W1622981938 @default.
- W3179317887 cites W1965816875 @default.
- W3179317887 cites W1969470083 @default.
- W3179317887 cites W1980874421 @default.
- W3179317887 cites W2001461320 @default.
- W3179317887 cites W2003940577 @default.
- W3179317887 cites W2004845705 @default.
- W3179317887 cites W2017315323 @default.
- W3179317887 cites W2020658239 @default.
- W3179317887 cites W2030037063 @default.
- W3179317887 cites W2031186530 @default.
- W3179317887 cites W2037955016 @default.
- W3179317887 cites W2043028125 @default.
- W3179317887 cites W2052976441 @default.
- W3179317887 cites W2054090612 @default.
- W3179317887 cites W2059200976 @default.
- W3179317887 cites W2061572873 @default.
- W3179317887 cites W2061970672 @default.
- W3179317887 cites W2070641420 @default.
- W3179317887 cites W2075742699 @default.
- W3179317887 cites W2082483369 @default.
- W3179317887 cites W2087879437 @default.
- W3179317887 cites W2091564354 @default.
- W3179317887 cites W2111715088 @default.
- W3179317887 cites W2112562798 @default.
- W3179317887 cites W2119002241 @default.
- W3179317887 cites W2146328638 @default.
- W3179317887 cites W2160527279 @default.
- W3179317887 cites W2164417367 @default.
- W3179317887 cites W2185559369 @default.
- W3179317887 cites W2243005836 @default.
- W3179317887 cites W2243686102 @default.
- W3179317887 cites W2395891450 @default.
- W3179317887 cites W2403412245 @default.
- W3179317887 cites W2604798101 @default.
- W3179317887 cites W2781411219 @default.
- W3179317887 cites W2786731311 @default.
- W3179317887 cites W2889973542 @default.
- W3179317887 cites W2913155813 @default.
- W3179317887 cites W2962866237 @default.
- W3179317887 cites W2963717725 @default.
- W3179317887 cites W2964048355 @default.
- W3179317887 cites W2965199304 @default.
- W3179317887 cites W2997166501 @default.
- W3179317887 cites W3038082899 @default.
- W3179317887 cites W3102174678 @default.
- W3179317887 cites W3130855 @default.
- W3179317887 cites W623765668 @default.
- W3179317887 cites W1880819836 @default.
- W3179317887 doi "https://doi.org/10.3233/fi-2021-2088" @default.
- W3179317887 hasPublicationYear "2022" @default.
- W3179317887 type Work @default.
- W3179317887 sameAs 3179317887 @default.
- W3179317887 citedByCount "0" @default.
- W3179317887 crossrefType "journal-article" @default.
- W3179317887 hasAuthorship W3179317887A5057731005 @default.
- W3179317887 hasAuthorship W3179317887A5073562431 @default.
- W3179317887 hasBestOaLocation W31793178873 @default.
- W3179317887 hasConcept C112505250 @default.
- W3179317887 hasConcept C118615104 @default.
- W3179317887 hasConcept C131671149 @default.
- W3179317887 hasConcept C153269930 @default.
- W3179317887 hasConcept C154945302 @default.
- W3179317887 hasConcept C176181172 @default.
- W3179317887 hasConcept C192034797 @default.
- W3179317887 hasConcept C195818886 @default.
- W3179317887 hasConcept C197551870 @default.
- W3179317887 hasConcept C199360897 @default.
- W3179317887 hasConcept C2777212361 @default.
- W3179317887 hasConcept C29248071 @default.
- W3179317887 hasConcept C311688 @default.
- W3179317887 hasConcept C33923547 @default.
- W3179317887 hasConcept C38677869 @default.
- W3179317887 hasConcept C39637292 @default.
- W3179317887 hasConcept C41008148 @default.
- W3179317887 hasConcept C45374587 @default.
- W3179317887 hasConcept C48415503 @default.
- W3179317887 hasConcept C52370388 @default.
- W3179317887 hasConcept C80444323 @default.
- W3179317887 hasConceptScore W3179317887C112505250 @default.
- W3179317887 hasConceptScore W3179317887C118615104 @default.
- W3179317887 hasConceptScore W3179317887C131671149 @default.