Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179404652> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W3179404652 endingPage "462" @default.
- W3179404652 startingPage "438" @default.
- W3179404652 abstract "In recent years, technological advancements in computer hardware systems have been lagging behind the demand for increased computational power, especially in application domains such as signal and image processing. Approximate computing is a design paradigm for efficient system design to overcome this bottleneck by exploiting the resilience of such applications to inaccuracy in their computations and trading off quality for hardware resource savings. Over the years, many approximation techniques have been proposed on various abstraction layers and demonstrated their effectiveness in different applications. Combining multiple methods in a larger system can further increase the resulting benefits. However, this often leads to a non-trivial optimization task of finding the best parameterization across all employed methods. The interaction and influence of error propagation between individual components demand a global optimization of parameters that simultaneously considers all the parameters for each of the approximation techniques used. In this work, we propose a methodology for exploring such highly complex design spaces using a multi-objective genetic algorithm in an FPGA-based system. Simple models are used for the estimation of resource demands in terms of power together with the anticipated quality degradation. The optimization is carried out to determine the trade-off between these objectives. We demonstrate the effectiveness of our approach on a typical color processing pipeline by tailoring the encoding and genetic operations to the needs of this application. To focus the optimization into a relevant region of interest, we propose ROI-NSGA, a novel variant of nondominated solution selection, and compare its optimization efficiency with the traditional NSGA-II approach for the examined case study. Our results show that the models are able to guide the optimization, and that the genetic operations and selections are capable to find Pareto-optimal solutions, among which the desired quality-resource trade-off can be chosen. Besides, the ROI-NSGA based optimization outperforms the results obtained for the case study using the NSGA-II approach within the region of interest." @default.
- W3179404652 created "2021-07-19" @default.
- W3179404652 creator A5005732789 @default.
- W3179404652 creator A5012135017 @default.
- W3179404652 creator A5027569043 @default.
- W3179404652 creator A5044361722 @default.
- W3179404652 creator A5060720819 @default.
- W3179404652 date "2021-01-01" @default.
- W3179404652 modified "2023-10-05" @default.
- W3179404652 title "Region of Interest-Based Parameter Optimization for Approximate Image Processing on FPGAs" @default.
- W3179404652 cites W1976055723 @default.
- W3179404652 cites W1989616102 @default.
- W3179404652 cites W1996431812 @default.
- W3179404652 cites W2035378788 @default.
- W3179404652 cites W2052499916 @default.
- W3179404652 cites W2113592437 @default.
- W3179404652 cites W2119565138 @default.
- W3179404652 cites W2133665775 @default.
- W3179404652 cites W2135089667 @default.
- W3179404652 cites W2139535992 @default.
- W3179404652 cites W2147926599 @default.
- W3179404652 cites W2162692637 @default.
- W3179404652 cites W2167159964 @default.
- W3179404652 cites W2265166184 @default.
- W3179404652 cites W2342690825 @default.
- W3179404652 cites W2525941697 @default.
- W3179404652 cites W2588565458 @default.
- W3179404652 cites W2614327678 @default.
- W3179404652 cites W2746351350 @default.
- W3179404652 cites W2759259332 @default.
- W3179404652 cites W2808980609 @default.
- W3179404652 cites W2886067236 @default.
- W3179404652 cites W2890409005 @default.
- W3179404652 cites W2912472836 @default.
- W3179404652 cites W2952499714 @default.
- W3179404652 cites W2960886960 @default.
- W3179404652 cites W2990369441 @default.
- W3179404652 cites W3092362650 @default.
- W3179404652 cites W3098543951 @default.
- W3179404652 cites W3108764696 @default.
- W3179404652 cites W3110814181 @default.
- W3179404652 cites W4235991875 @default.
- W3179404652 cites W4239085833 @default.
- W3179404652 cites W4243410967 @default.
- W3179404652 cites W4246565613 @default.
- W3179404652 doi "https://doi.org/10.15803/ijnc.11.2_438" @default.
- W3179404652 hasPublicationYear "2021" @default.
- W3179404652 type Work @default.
- W3179404652 sameAs 3179404652 @default.
- W3179404652 citedByCount "1" @default.
- W3179404652 countsByYear W31794046522022 @default.
- W3179404652 crossrefType "journal-article" @default.
- W3179404652 hasAuthorship W3179404652A5005732789 @default.
- W3179404652 hasAuthorship W3179404652A5012135017 @default.
- W3179404652 hasAuthorship W3179404652A5027569043 @default.
- W3179404652 hasAuthorship W3179404652A5044361722 @default.
- W3179404652 hasAuthorship W3179404652A5060720819 @default.
- W3179404652 hasBestOaLocation W31794046521 @default.
- W3179404652 hasConcept C11413529 @default.
- W3179404652 hasConcept C115961682 @default.
- W3179404652 hasConcept C149635348 @default.
- W3179404652 hasConcept C154945302 @default.
- W3179404652 hasConcept C173608175 @default.
- W3179404652 hasConcept C41008148 @default.
- W3179404652 hasConcept C42935608 @default.
- W3179404652 hasConcept C9417928 @default.
- W3179404652 hasConceptScore W3179404652C11413529 @default.
- W3179404652 hasConceptScore W3179404652C115961682 @default.
- W3179404652 hasConceptScore W3179404652C149635348 @default.
- W3179404652 hasConceptScore W3179404652C154945302 @default.
- W3179404652 hasConceptScore W3179404652C173608175 @default.
- W3179404652 hasConceptScore W3179404652C41008148 @default.
- W3179404652 hasConceptScore W3179404652C42935608 @default.
- W3179404652 hasConceptScore W3179404652C9417928 @default.
- W3179404652 hasIssue "2" @default.
- W3179404652 hasLocation W31794046521 @default.
- W3179404652 hasOpenAccess W3179404652 @default.
- W3179404652 hasPrimaryLocation W31794046521 @default.
- W3179404652 hasRelatedWork W1491899005 @default.
- W3179404652 hasRelatedWork W1604898313 @default.
- W3179404652 hasRelatedWork W2037481744 @default.
- W3179404652 hasRelatedWork W2117014006 @default.
- W3179404652 hasRelatedWork W2164287667 @default.
- W3179404652 hasRelatedWork W2363391165 @default.
- W3179404652 hasRelatedWork W2365743651 @default.
- W3179404652 hasRelatedWork W2372170743 @default.
- W3179404652 hasRelatedWork W2388618054 @default.
- W3179404652 hasRelatedWork W4233815414 @default.
- W3179404652 hasVolume "11" @default.
- W3179404652 isParatext "false" @default.
- W3179404652 isRetracted "false" @default.
- W3179404652 magId "3179404652" @default.
- W3179404652 workType "article" @default.