Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179431950> ?p ?o ?g. }
- W3179431950 endingPage "463" @default.
- W3179431950 startingPage "451" @default.
- W3179431950 abstract "In the conventional scheduling problem, the parameters such as the processing time for each job and due dates are usually assumed to be known exactly, but in many real-world applications, these parameters may very dynamically due to human factors or operating faults. During the last decade, several works on scheduling problems have used a fuzzy approach including either uncertain or imprecise data. A fuzzy logic based tool for multi-objective Hybrid Flow-shop Scheduling with Multi-processor Tasks (HFSMT) problem is presented in this paper. In this study, HFSMT problems with a fuzzy processing time and a fuzzy due date are formulated, taking Oğuz and Ercan’s benchmark problems in the literature into account. Fuzzy HFSMT problems are formulated by three-objectives: the first is to maximize the minimum agreement index and the second is to maximize the average agreement index, and the third is to minimize the maximum fuzzy completion time. An efficient genetic algorithm(GA) is proposed to solve the formulated fuzzy HFSMT problems. The feasibility and effectiveness of the proposed method are demonstrated by comparing it with the simulated annealing (SA) algorithm in the literature." @default.
- W3179431950 created "2021-07-19" @default.
- W3179431950 creator A5031313873 @default.
- W3179431950 creator A5062726314 @default.
- W3179431950 date "2021-12-31" @default.
- W3179431950 modified "2023-10-01" @default.
- W3179431950 title "A fuzzy logic based methodology for multi-objective hybrid flow shop scheduling with multi-processor tasks problems and solving with an efficient genetic algorithm" @default.
- W3179431950 cites W1875832033 @default.
- W3179431950 cites W1972396429 @default.
- W3179431950 cites W1973433718 @default.
- W3179431950 cites W1974648024 @default.
- W3179431950 cites W1975834065 @default.
- W3179431950 cites W1980486483 @default.
- W3179431950 cites W1980564456 @default.
- W3179431950 cites W1986991185 @default.
- W3179431950 cites W1992535826 @default.
- W3179431950 cites W1998873227 @default.
- W3179431950 cites W2001050033 @default.
- W3179431950 cites W2002313204 @default.
- W3179431950 cites W2015401610 @default.
- W3179431950 cites W2016874436 @default.
- W3179431950 cites W2037524044 @default.
- W3179431950 cites W2047348273 @default.
- W3179431950 cites W2053094150 @default.
- W3179431950 cites W2055494917 @default.
- W3179431950 cites W2059699712 @default.
- W3179431950 cites W2061219650 @default.
- W3179431950 cites W2065067435 @default.
- W3179431950 cites W2068721389 @default.
- W3179431950 cites W2076028784 @default.
- W3179431950 cites W2077674223 @default.
- W3179431950 cites W2078628884 @default.
- W3179431950 cites W2093551803 @default.
- W3179431950 cites W2136659887 @default.
- W3179431950 cites W2138028598 @default.
- W3179431950 cites W2142087645 @default.
- W3179431950 cites W2258674730 @default.
- W3179431950 cites W2346318195 @default.
- W3179431950 cites W2544830405 @default.
- W3179431950 cites W2593418740 @default.
- W3179431950 cites W2890031360 @default.
- W3179431950 cites W2898918733 @default.
- W3179431950 cites W2899105331 @default.
- W3179431950 cites W2903466805 @default.
- W3179431950 cites W2913988093 @default.
- W3179431950 cites W2939549836 @default.
- W3179431950 cites W2949074561 @default.
- W3179431950 cites W2969640549 @default.
- W3179431950 cites W3003336712 @default.
- W3179431950 cites W3088878890 @default.
- W3179431950 doi "https://doi.org/10.3233/jifs-219203" @default.
- W3179431950 hasPublicationYear "2021" @default.
- W3179431950 type Work @default.
- W3179431950 sameAs 3179431950 @default.
- W3179431950 citedByCount "2" @default.
- W3179431950 countsByYear W31794319502022 @default.
- W3179431950 countsByYear W31794319502023 @default.
- W3179431950 crossrefType "journal-article" @default.
- W3179431950 hasAuthorship W3179431950A5031313873 @default.
- W3179431950 hasAuthorship W3179431950A5062726314 @default.
- W3179431950 hasConcept C111919701 @default.
- W3179431950 hasConcept C11413529 @default.
- W3179431950 hasConcept C126255220 @default.
- W3179431950 hasConcept C126980161 @default.
- W3179431950 hasConcept C154945302 @default.
- W3179431950 hasConcept C158336966 @default.
- W3179431950 hasConcept C206729178 @default.
- W3179431950 hasConcept C33923547 @default.
- W3179431950 hasConcept C41008148 @default.
- W3179431950 hasConcept C55416958 @default.
- W3179431950 hasConcept C58166 @default.
- W3179431950 hasConcept C68387754 @default.
- W3179431950 hasConceptScore W3179431950C111919701 @default.
- W3179431950 hasConceptScore W3179431950C11413529 @default.
- W3179431950 hasConceptScore W3179431950C126255220 @default.
- W3179431950 hasConceptScore W3179431950C126980161 @default.
- W3179431950 hasConceptScore W3179431950C154945302 @default.
- W3179431950 hasConceptScore W3179431950C158336966 @default.
- W3179431950 hasConceptScore W3179431950C206729178 @default.
- W3179431950 hasConceptScore W3179431950C33923547 @default.
- W3179431950 hasConceptScore W3179431950C41008148 @default.
- W3179431950 hasConceptScore W3179431950C55416958 @default.
- W3179431950 hasConceptScore W3179431950C58166 @default.
- W3179431950 hasConceptScore W3179431950C68387754 @default.
- W3179431950 hasIssue "1" @default.
- W3179431950 hasLocation W31794319501 @default.
- W3179431950 hasOpenAccess W3179431950 @default.
- W3179431950 hasPrimaryLocation W31794319501 @default.
- W3179431950 hasRelatedWork W1999029646 @default.
- W3179431950 hasRelatedWork W2001275366 @default.
- W3179431950 hasRelatedWork W2091937747 @default.
- W3179431950 hasRelatedWork W2115917332 @default.
- W3179431950 hasRelatedWork W2117254955 @default.
- W3179431950 hasRelatedWork W2135971727 @default.
- W3179431950 hasRelatedWork W2536588104 @default.
- W3179431950 hasRelatedWork W2805964811 @default.
- W3179431950 hasRelatedWork W2900095789 @default.
- W3179431950 hasRelatedWork W4241859971 @default.