Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179452314> ?p ?o ?g. }
- W3179452314 endingPage "896" @default.
- W3179452314 startingPage "859" @default.
- W3179452314 abstract "Ensuring the health and safety of senior citizens who live alone is a growing societal concern. The Activity of Daily Living (ADL) approach is a common means to monitor disease progression and the ability of these individuals to care for themselves. However, the prevailing sensor-based ADL monitoring systems primarily rely on wearable motion sensors, capture insufficient information for accurate ADL recognition, and do not provide a comprehensive understanding of ADLs at different granularities. Current healthcare IS and mobile analytics research focuses on studying the system, device, and provided services, and is in need of an end-to-end solution to comprehensively recognize ADLs based on mobile sensor data. This study adopts the design science paradigm and employs advanced deep learning algorithms to develop a novel hierarchical, multiphase ADL recognition framework to model ADLs at different granularities. We propose a novel 2D interaction kernel for convolutional neural networks to leverage interactions between human and object motion sensors. We rigorously evaluate each proposed module and the entire framework against state-of-the-art benchmarks (e.g., support vector machines, DeepConvLSTM, hidden Markov models, and topic-modeling-based ADLR) on two real-life motion sensor datasets that consist of ADLs at varying granularities: Opportunity and INTER. Results and a case study demonstrate that our framework can recognize ADLs at different levels more accurately. We discuss how stakeholders can further benefit from our proposed framework. Beyond demonstrating practical utility, we discuss contributions to the IS knowledge base for future design science-based cybersecurity, healthcare, and mobile analytics applications." @default.
- W3179452314 created "2021-07-19" @default.
- W3179452314 creator A5017102020 @default.
- W3179452314 creator A5038811607 @default.
- W3179452314 creator A5049960572 @default.
- W3179452314 creator A5084215696 @default.
- W3179452314 date "2021-06-01" @default.
- W3179452314 modified "2023-09-30" @default.
- W3179452314 title "A Deep Learning Approach for Recognizing Activity of Daily Living (ADL) for Senior Care: Exploiting Interaction Dependency and Temporal Patterns" @default.
- W3179452314 cites W1276866904 @default.
- W3179452314 cites W1414253448 @default.
- W3179452314 cites W195544187 @default.
- W3179452314 cites W1981515531 @default.
- W3179452314 cites W1987988992 @default.
- W3179452314 cites W1988054515 @default.
- W3179452314 cites W1992108683 @default.
- W3179452314 cites W2002261403 @default.
- W3179452314 cites W2006318999 @default.
- W3179452314 cites W2019115192 @default.
- W3179452314 cites W2035569891 @default.
- W3179452314 cites W2036343291 @default.
- W3179452314 cites W2050586532 @default.
- W3179452314 cites W2099336098 @default.
- W3179452314 cites W2101657583 @default.
- W3179452314 cites W2103083616 @default.
- W3179452314 cites W2105046342 @default.
- W3179452314 cites W2110770911 @default.
- W3179452314 cites W2112028307 @default.
- W3179452314 cites W2126511896 @default.
- W3179452314 cites W2128121198 @default.
- W3179452314 cites W2142241043 @default.
- W3179452314 cites W2145511818 @default.
- W3179452314 cites W2150886314 @default.
- W3179452314 cites W2151591509 @default.
- W3179452314 cites W2157331557 @default.
- W3179452314 cites W2158342889 @default.
- W3179452314 cites W2160439953 @default.
- W3179452314 cites W2162708835 @default.
- W3179452314 cites W2163198930 @default.
- W3179452314 cites W2202040401 @default.
- W3179452314 cites W2219995598 @default.
- W3179452314 cites W2222512263 @default.
- W3179452314 cites W2247209766 @default.
- W3179452314 cites W2270470215 @default.
- W3179452314 cites W2296137844 @default.
- W3179452314 cites W2409669645 @default.
- W3179452314 cites W2523496238 @default.
- W3179452314 cites W2538147761 @default.
- W3179452314 cites W2554786525 @default.
- W3179452314 cites W2593909786 @default.
- W3179452314 cites W2607299704 @default.
- W3179452314 cites W2614272530 @default.
- W3179452314 cites W2618571370 @default.
- W3179452314 cites W2729161046 @default.
- W3179452314 cites W2730704445 @default.
- W3179452314 cites W2736191430 @default.
- W3179452314 cites W2748388916 @default.
- W3179452314 cites W2767979715 @default.
- W3179452314 cites W2770265759 @default.
- W3179452314 cites W2771488283 @default.
- W3179452314 cites W2782393250 @default.
- W3179452314 cites W2785506998 @default.
- W3179452314 cites W2789868604 @default.
- W3179452314 cites W2804936561 @default.
- W3179452314 cites W2860248510 @default.
- W3179452314 cites W2886492560 @default.
- W3179452314 cites W2888077475 @default.
- W3179452314 cites W2893019778 @default.
- W3179452314 cites W2919115771 @default.
- W3179452314 cites W2927123024 @default.
- W3179452314 cites W3124552846 @default.
- W3179452314 cites W3126057479 @default.
- W3179452314 cites W3151685851 @default.
- W3179452314 cites W4254114328 @default.
- W3179452314 cites W4292548574 @default.
- W3179452314 cites W91760514 @default.
- W3179452314 cites W2767553997 @default.
- W3179452314 doi "https://doi.org/10.25300/misq/2021/15574" @default.
- W3179452314 hasPublicationYear "2021" @default.
- W3179452314 type Work @default.
- W3179452314 sameAs 3179452314 @default.
- W3179452314 citedByCount "18" @default.
- W3179452314 countsByYear W31794523142021 @default.
- W3179452314 countsByYear W31794523142022 @default.
- W3179452314 countsByYear W31794523142023 @default.
- W3179452314 crossrefType "journal-article" @default.
- W3179452314 hasAuthorship W3179452314A5017102020 @default.
- W3179452314 hasAuthorship W3179452314A5038811607 @default.
- W3179452314 hasAuthorship W3179452314A5049960572 @default.
- W3179452314 hasAuthorship W3179452314A5084215696 @default.
- W3179452314 hasConcept C107457646 @default.
- W3179452314 hasConcept C118552586 @default.
- W3179452314 hasConcept C119857082 @default.
- W3179452314 hasConcept C121687571 @default.
- W3179452314 hasConcept C149635348 @default.
- W3179452314 hasConcept C150594956 @default.
- W3179452314 hasConcept C153083717 @default.
- W3179452314 hasConcept C154945302 @default.