Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179663479> ?p ?o ?g. }
- W3179663479 endingPage "126655" @default.
- W3179663479 startingPage "126655" @default.
- W3179663479 abstract "Data assimilation techniques allow the integration of multi-source data with physical modeling of dense nonaqueous phase liquid (DNAPL) source zones to monitor their evolution in time and thereby improve remediation efforts. The DNAPL source zone is governed by multiphase physics and its architecture is usually highly irregular and nonstationary. Traditional data assimilation methods use stationary models to describe these nonstationary DNAPL saturation fields, leading to significant errors in the estimation of unknown source zone architectures (SZAs). In this study, we propose a geostatistical data assimilation method to improve performance monitoring of DNAPL remediation. We estimate the DNAPL SZA after parameterizing the DNAPL saturation field using a deep learning method instead of a stationary statistical model. First, we train a convolutional variational autoencoder (CVAE) network to capture the physics of DNAPL infiltration and depletion. Then, we incorporate the CVAE network within the Ensemble Kalman filter (EnKF) to resolve the evolving DNAPL SZA by assimilating time-lapse hydrogeophysical measurements (i.e., oscillatory hydraulic tomography, downgradient dissolved DNAPL concentration, and electrical resistivity tomography). To assess the proposed CVAE-EnKF framework's performance, we conducted numerical experiments with evolving DNAPL SZAs in a 2D heterogeneous aquifer. Results show that the proposed framework significantly improved DNAPL saturation estimates throughout the source zone over time, compared to the standard EnKF method. CVAE-EnKF reduced the estimation error of DNAPL mass remediated by 51% from EnKF, along with better predictions of source zone longevity. It also better captured the morphology and center/spread of mass of the evolving remediated portions of the source zone and provided better estimates of pooled-DNAPL mass. Furthermore, the CVAE-EnKF method is more stable and converges faster than EnKF alone. Overall, the proposed data assimilation framework can improve real-time monitoring of DNAPL remediation and risk analysis." @default.
- W3179663479 created "2021-07-19" @default.
- W3179663479 creator A5018650372 @default.
- W3179663479 creator A5035773168 @default.
- W3179663479 creator A5036442264 @default.
- W3179663479 creator A5038583170 @default.
- W3179663479 creator A5059286480 @default.
- W3179663479 creator A5064860375 @default.
- W3179663479 creator A5074810659 @default.
- W3179663479 creator A5077217744 @default.
- W3179663479 date "2021-10-01" @default.
- W3179663479 modified "2023-10-16" @default.
- W3179663479 title "Integrating deep learning-based data assimilation and hydrogeophysical data for improved monitoring of DNAPL source zones during remediation" @default.
- W3179663479 cites W1565426204 @default.
- W3179663479 cites W1578938492 @default.
- W3179663479 cites W1597059884 @default.
- W3179663479 cites W1610967235 @default.
- W3179663479 cites W1611937849 @default.
- W3179663479 cites W1950984153 @default.
- W3179663479 cites W1968712906 @default.
- W3179663479 cites W1970319708 @default.
- W3179663479 cites W1974563633 @default.
- W3179663479 cites W2008134784 @default.
- W3179663479 cites W2015474310 @default.
- W3179663479 cites W2018353504 @default.
- W3179663479 cites W2020848335 @default.
- W3179663479 cites W2062869497 @default.
- W3179663479 cites W2081182050 @default.
- W3179663479 cites W2086422519 @default.
- W3179663479 cites W2091019041 @default.
- W3179663479 cites W2100667536 @default.
- W3179663479 cites W2103520741 @default.
- W3179663479 cites W2129622983 @default.
- W3179663479 cites W2138278035 @default.
- W3179663479 cites W2143767673 @default.
- W3179663479 cites W2144807521 @default.
- W3179663479 cites W2145754921 @default.
- W3179663479 cites W2146029121 @default.
- W3179663479 cites W2148257844 @default.
- W3179663479 cites W2149178572 @default.
- W3179663479 cites W2153303996 @default.
- W3179663479 cites W2153700325 @default.
- W3179663479 cites W2157098139 @default.
- W3179663479 cites W2267999088 @default.
- W3179663479 cites W2418946128 @default.
- W3179663479 cites W2597607158 @default.
- W3179663479 cites W2626344215 @default.
- W3179663479 cites W2748426722 @default.
- W3179663479 cites W2950337752 @default.
- W3179663479 cites W2982471183 @default.
- W3179663479 cites W3006114742 @default.
- W3179663479 cites W3010050008 @default.
- W3179663479 cites W3044348348 @default.
- W3179663479 cites W3098864240 @default.
- W3179663479 cites W3128950974 @default.
- W3179663479 cites W88528537 @default.
- W3179663479 doi "https://doi.org/10.1016/j.jhydrol.2021.126655" @default.
- W3179663479 hasPublicationYear "2021" @default.
- W3179663479 type Work @default.
- W3179663479 sameAs 3179663479 @default.
- W3179663479 citedByCount "11" @default.
- W3179663479 countsByYear W31796634792021 @default.
- W3179663479 countsByYear W31796634792022 @default.
- W3179663479 countsByYear W31796634792023 @default.
- W3179663479 crossrefType "journal-article" @default.
- W3179663479 hasAuthorship W3179663479A5018650372 @default.
- W3179663479 hasAuthorship W3179663479A5035773168 @default.
- W3179663479 hasAuthorship W3179663479A5036442264 @default.
- W3179663479 hasAuthorship W3179663479A5038583170 @default.
- W3179663479 hasAuthorship W3179663479A5059286480 @default.
- W3179663479 hasAuthorship W3179663479A5064860375 @default.
- W3179663479 hasAuthorship W3179663479A5074810659 @default.
- W3179663479 hasAuthorship W3179663479A5077217744 @default.
- W3179663479 hasConcept C112570922 @default.
- W3179663479 hasConcept C127313418 @default.
- W3179663479 hasConcept C153294291 @default.
- W3179663479 hasConcept C154945302 @default.
- W3179663479 hasConcept C157286648 @default.
- W3179663479 hasConcept C159390177 @default.
- W3179663479 hasConcept C187320778 @default.
- W3179663479 hasConcept C18903297 @default.
- W3179663479 hasConcept C205649164 @default.
- W3179663479 hasConcept C206833254 @default.
- W3179663479 hasConcept C24552861 @default.
- W3179663479 hasConcept C39432304 @default.
- W3179663479 hasConcept C41008148 @default.
- W3179663479 hasConcept C522964758 @default.
- W3179663479 hasConcept C75622301 @default.
- W3179663479 hasConcept C76177295 @default.
- W3179663479 hasConcept C79334102 @default.
- W3179663479 hasConcept C86803240 @default.
- W3179663479 hasConceptScore W3179663479C112570922 @default.
- W3179663479 hasConceptScore W3179663479C127313418 @default.
- W3179663479 hasConceptScore W3179663479C153294291 @default.
- W3179663479 hasConceptScore W3179663479C154945302 @default.
- W3179663479 hasConceptScore W3179663479C157286648 @default.
- W3179663479 hasConceptScore W3179663479C159390177 @default.
- W3179663479 hasConceptScore W3179663479C187320778 @default.