Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179669524> ?p ?o ?g. }
- W3179669524 endingPage "16919" @default.
- W3179669524 startingPage "16899" @default.
- W3179669524 abstract "Coronavirus disease 2019 (COVID-19) is pervasive worldwide, posing a high risk to people's safety and health. Many algorithms were developed to identify COVID-19. One way of identifying COVID-19 is by computed tomography (CT) images. Some segmentation methods are proposed to extract regions of interest from COVID-19 CT images to improve the classification. In this paper, an efficient version of the recent manta ray foraging optimization (MRFO) algorithm is proposed based on the oppositionbased learning called the MRFO-OBL algorithm. The original MRFO algorithm can stagnate in local optima and requires further exploration with adequate exploitation. Thus, to improve the population variety in the search space, we applied Opposition-based learning (OBL) in the MRFO's initialization step. MRFO-OBL algorithm can solve the image segmentation problem using multilevel thresholding. The proposed MRFO-OBL is evaluated using Otsu's method over the COVID-19 CT images and compared with six meta-heuristic algorithms: sine-cosine algorithm, moth flame optimization, equilibrium optimization, whale optimization algorithm, slap swarm algorithm, and original MRFO algorithm. MRFO-OBL obtained useful and accurate results in quality, consistency, and evaluation matrices, such as peak signal-to-noise ratio and structural similarity index. Eventually, MRFO-OBL obtained more robustness for the segmentation than all other algorithms compared. The experimental results demonstrate that the proposed method outperforms the original MRFO and the other compared algorithms under Otsu's method for all the used metrics." @default.
- W3179669524 created "2021-07-19" @default.
- W3179669524 creator A5027679413 @default.
- W3179669524 creator A5056436780 @default.
- W3179669524 creator A5067926804 @default.
- W3179669524 date "2021-07-07" @default.
- W3179669524 modified "2023-09-29" @default.
- W3179669524 title "Improved manta ray foraging optimization for multi-level thresholding using COVID-19 CT images" @default.
- W3179669524 cites W1595159159 @default.
- W3179669524 cites W1614535104 @default.
- W3179669524 cites W1965239040 @default.
- W3179669524 cites W1970800786 @default.
- W3179669524 cites W1976744965 @default.
- W3179669524 cites W2021422668 @default.
- W3179669524 cites W2024352272 @default.
- W3179669524 cites W2052355402 @default.
- W3179669524 cites W2061438946 @default.
- W3179669524 cites W2075752599 @default.
- W3179669524 cites W2083970667 @default.
- W3179669524 cites W2090550165 @default.
- W3179669524 cites W2106371135 @default.
- W3179669524 cites W2133059825 @default.
- W3179669524 cites W2133665775 @default.
- W3179669524 cites W2162745921 @default.
- W3179669524 cites W2175516850 @default.
- W3179669524 cites W2217371171 @default.
- W3179669524 cites W2232317135 @default.
- W3179669524 cites W2290883490 @default.
- W3179669524 cites W2464585100 @default.
- W3179669524 cites W2474134051 @default.
- W3179669524 cites W2531479340 @default.
- W3179669524 cites W2547796530 @default.
- W3179669524 cites W2553968288 @default.
- W3179669524 cites W2599187771 @default.
- W3179669524 cites W2605810061 @default.
- W3179669524 cites W2613771876 @default.
- W3179669524 cites W2641311918 @default.
- W3179669524 cites W2738900493 @default.
- W3179669524 cites W2745838971 @default.
- W3179669524 cites W2753234324 @default.
- W3179669524 cites W2769248982 @default.
- W3179669524 cites W2775977688 @default.
- W3179669524 cites W2802800902 @default.
- W3179669524 cites W2891074550 @default.
- W3179669524 cites W2892295558 @default.
- W3179669524 cites W2895416280 @default.
- W3179669524 cites W2919979744 @default.
- W3179669524 cites W2942324044 @default.
- W3179669524 cites W2945156782 @default.
- W3179669524 cites W2962182762 @default.
- W3179669524 cites W2971947047 @default.
- W3179669524 cites W2976525124 @default.
- W3179669524 cites W2979018951 @default.
- W3179669524 cites W2982453621 @default.
- W3179669524 cites W2985845430 @default.
- W3179669524 cites W2989603874 @default.
- W3179669524 cites W2992674204 @default.
- W3179669524 cites W2997838783 @default.
- W3179669524 cites W3004276184 @default.
- W3179669524 cites W3004894624 @default.
- W3179669524 cites W3010846265 @default.
- W3179669524 cites W3015395776 @default.
- W3179669524 cites W3028182033 @default.
- W3179669524 cites W3036044602 @default.
- W3179669524 cites W3036199571 @default.
- W3179669524 cites W3040989605 @default.
- W3179669524 cites W3049757379 @default.
- W3179669524 cites W3056359467 @default.
- W3179669524 cites W3087000505 @default.
- W3179669524 cites W3087867645 @default.
- W3179669524 cites W3090396243 @default.
- W3179669524 cites W3092103057 @default.
- W3179669524 cites W3096383447 @default.
- W3179669524 cites W3096682064 @default.
- W3179669524 cites W3114266307 @default.
- W3179669524 cites W3115094144 @default.
- W3179669524 cites W3115894432 @default.
- W3179669524 cites W3117174553 @default.
- W3179669524 cites W3127197897 @default.
- W3179669524 cites W3129744432 @default.
- W3179669524 cites W3131675218 @default.
- W3179669524 cites W3132415829 @default.
- W3179669524 cites W3133445295 @default.
- W3179669524 cites W3137745396 @default.
- W3179669524 cites W3155707014 @default.
- W3179669524 cites W4250503569 @default.
- W3179669524 cites W4252684946 @default.
- W3179669524 cites W4292083457 @default.
- W3179669524 cites W4362223627 @default.
- W3179669524 cites W620113950 @default.
- W3179669524 cites W883434633 @default.
- W3179669524 doi "https://doi.org/10.1007/s00521-021-06273-3" @default.
- W3179669524 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8261821" @default.
- W3179669524 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34248291" @default.
- W3179669524 hasPublicationYear "2021" @default.
- W3179669524 type Work @default.
- W3179669524 sameAs 3179669524 @default.
- W3179669524 citedByCount "65" @default.