Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179671745> ?p ?o ?g. }
- W3179671745 endingPage "4196" @default.
- W3179671745 startingPage "4184" @default.
- W3179671745 abstract "The majority of wind power is currently produced on high wind speed sites by large wind turbine, whereas small wind turbines often operate in light wind conditions. Small capacity wind turbines have not received the same engineering attention as their larger counterparts. This is partially due to a number of unique problems that small wind turbines experience. The most relevant are: low operating Reynolds number (Re<500,000), and poor performance at high angles of attack. Low and medium wind speed sites (Class II–IV) are more common than high wind speed sites, meaning there is a large source of energy not being taken advantage of. Several studies have suggested that flow control devices such as the spherical tubercle could be used to increase lift before stall and generate more power in such situations. The aim of this study is to determine the effect of tubercle amplitude on aerodynamic performance of an airfoil at low-Re numbers (Re=300,000&Re=400,000). Three amplitudes were considered in this study: A1=0.005c, A2=0.01c, and A3=0.03c. A detailed 2D simulation study is carried out, using FLUENT (a commercial CFD software) and the TransitionSSTk−ω turbulence model, to obtain aerodynamic coefficients and flow characteristics. Results indicate that small tubercles perform better overall than larger tubercles. The airfoil with the smallest tubercle outperforms the unmodified airfoil at both studied Reynolds numbers at angles of attack 0° – 4 °. Moreover, the airfoil with the largest tubercle outperformed all of the airfoils at an angle of attack of 0° and Re=300,000. The analysis of the aerodynamic coefficients indicates that the improvement of the aerodynamic performance of airfoils with tubercles is due to the reduction of the drag coefficient. Pressure, intermittency and wall shear stress contours suggest that the overall drag reduction is achieved through the decrease of friction drag. The decrease in friction drag is attributed to the thickening of the laminar boundary layer, caused by a more favorable pressure distribution around the airfoils with the aerodynamic improvements. Moreover, the drastic deterioration in aerodynamic performance at higher angles of attack is attributed to the turbulence generated by the tubercles. This study suggests that spherical tubercles could have a potential application in small wind turbines." @default.
- W3179671745 created "2021-07-19" @default.
- W3179671745 creator A5003572868 @default.
- W3179671745 creator A5030648718 @default.
- W3179671745 creator A5039448756 @default.
- W3179671745 creator A5054655337 @default.
- W3179671745 creator A5071602672 @default.
- W3179671745 date "2021-11-01" @default.
- W3179671745 modified "2023-10-10" @default.
- W3179671745 title "A parametric study of the effect of leading edge spherical tubercle amplitudes on the aerodynamic performance of a 2D wind turbine airfoil at low Reynolds numbers using computational fluid dynamics" @default.
- W3179671745 cites W1970099888 @default.
- W3179671745 cites W1987011891 @default.
- W3179671745 cites W1999069830 @default.
- W3179671745 cites W2000918214 @default.
- W3179671745 cites W2011891177 @default.
- W3179671745 cites W2013051152 @default.
- W3179671745 cites W2013508463 @default.
- W3179671745 cites W2020949538 @default.
- W3179671745 cites W2051171181 @default.
- W3179671745 cites W2057013409 @default.
- W3179671745 cites W2071712352 @default.
- W3179671745 cites W2083826637 @default.
- W3179671745 cites W2085129815 @default.
- W3179671745 cites W2085985646 @default.
- W3179671745 cites W2092216949 @default.
- W3179671745 cites W2122469780 @default.
- W3179671745 cites W2131653803 @default.
- W3179671745 cites W2134067974 @default.
- W3179671745 cites W2138022589 @default.
- W3179671745 cites W2139463440 @default.
- W3179671745 cites W2142206837 @default.
- W3179671745 cites W2144608420 @default.
- W3179671745 cites W2169938482 @default.
- W3179671745 cites W2270408365 @default.
- W3179671745 cites W2345414674 @default.
- W3179671745 cites W2605772147 @default.
- W3179671745 cites W2752953830 @default.
- W3179671745 cites W2765553766 @default.
- W3179671745 cites W2802044067 @default.
- W3179671745 cites W2920854694 @default.
- W3179671745 cites W2925543893 @default.
- W3179671745 cites W3020904964 @default.
- W3179671745 cites W4214721638 @default.
- W3179671745 doi "https://doi.org/10.1016/j.egyr.2021.06.093" @default.
- W3179671745 hasPublicationYear "2021" @default.
- W3179671745 type Work @default.
- W3179671745 sameAs 3179671745 @default.
- W3179671745 citedByCount "11" @default.
- W3179671745 countsByYear W31796717452021 @default.
- W3179671745 countsByYear W31796717452022 @default.
- W3179671745 countsByYear W31796717452023 @default.
- W3179671745 crossrefType "journal-article" @default.
- W3179671745 hasAuthorship W3179671745A5003572868 @default.
- W3179671745 hasAuthorship W3179671745A5030648718 @default.
- W3179671745 hasAuthorship W3179671745A5039448756 @default.
- W3179671745 hasAuthorship W3179671745A5054655337 @default.
- W3179671745 hasAuthorship W3179671745A5071602672 @default.
- W3179671745 hasBestOaLocation W31796717451 @default.
- W3179671745 hasConcept C112124176 @default.
- W3179671745 hasConcept C119599485 @default.
- W3179671745 hasConcept C121332964 @default.
- W3179671745 hasConcept C124101348 @default.
- W3179671745 hasConcept C127413603 @default.
- W3179671745 hasConcept C13393347 @default.
- W3179671745 hasConcept C139002025 @default.
- W3179671745 hasConcept C146978453 @default.
- W3179671745 hasConcept C153294291 @default.
- W3179671745 hasConcept C161067210 @default.
- W3179671745 hasConcept C1633027 @default.
- W3179671745 hasConcept C182748727 @default.
- W3179671745 hasConcept C196558001 @default.
- W3179671745 hasConcept C199104240 @default.
- W3179671745 hasConcept C2778449969 @default.
- W3179671745 hasConcept C41008148 @default.
- W3179671745 hasConcept C527307 @default.
- W3179671745 hasConcept C57879066 @default.
- W3179671745 hasConcept C5804382 @default.
- W3179671745 hasConcept C78600449 @default.
- W3179671745 hasConceptScore W3179671745C112124176 @default.
- W3179671745 hasConceptScore W3179671745C119599485 @default.
- W3179671745 hasConceptScore W3179671745C121332964 @default.
- W3179671745 hasConceptScore W3179671745C124101348 @default.
- W3179671745 hasConceptScore W3179671745C127413603 @default.
- W3179671745 hasConceptScore W3179671745C13393347 @default.
- W3179671745 hasConceptScore W3179671745C139002025 @default.
- W3179671745 hasConceptScore W3179671745C146978453 @default.
- W3179671745 hasConceptScore W3179671745C153294291 @default.
- W3179671745 hasConceptScore W3179671745C161067210 @default.
- W3179671745 hasConceptScore W3179671745C1633027 @default.
- W3179671745 hasConceptScore W3179671745C182748727 @default.
- W3179671745 hasConceptScore W3179671745C196558001 @default.
- W3179671745 hasConceptScore W3179671745C199104240 @default.
- W3179671745 hasConceptScore W3179671745C2778449969 @default.
- W3179671745 hasConceptScore W3179671745C41008148 @default.
- W3179671745 hasConceptScore W3179671745C527307 @default.
- W3179671745 hasConceptScore W3179671745C57879066 @default.
- W3179671745 hasConceptScore W3179671745C5804382 @default.
- W3179671745 hasConceptScore W3179671745C78600449 @default.