Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179673602> ?p ?o ?g. }
- W3179673602 abstract "Abstract Predictive materials synthesis is the primary bottleneck in realizing functional and quantum materials. Strategies for synthesis of promising materials are currently identified by time-consuming trial and error and there are no known predictive schemes to design synthesis parameters for materials. We use offline reinforcement learning (RL) to predict optimal synthesis schedules, i.e., a time-sequence of reaction conditions like temperatures and concentrations, for the synthesis of semiconducting monolayer MoS 2 using chemical vapor deposition. The RL agent, trained on 10,000 computational synthesis simulations, learned threshold temperatures and chemical potentials for onset of chemical reactions and predicted previously unknown synthesis schedules that produce well-sulfidized crystalline, phase-pure MoS 2 . The model can be extended to multi-task objectives such as predicting profiles for synthesis of complex structures including multi-phase heterostructures and can predict long-time behavior of reacting systems, far beyond the domain of molecular dynamics simulations, making these predictions directly relevant to experimental synthesis." @default.
- W3179673602 created "2021-07-19" @default.
- W3179673602 creator A5044477241 @default.
- W3179673602 creator A5052894521 @default.
- W3179673602 creator A5058496452 @default.
- W3179673602 creator A5063758358 @default.
- W3179673602 creator A5087579275 @default.
- W3179673602 creator A5091810223 @default.
- W3179673602 date "2021-07-14" @default.
- W3179673602 modified "2023-10-18" @default.
- W3179673602 title "Autonomous reinforcement learning agent for chemical vapor deposition synthesis of quantum materials" @default.
- W3179673602 cites W2044375044 @default.
- W3179673602 cites W2065832194 @default.
- W3179673602 cites W2083415705 @default.
- W3179673602 cites W2102677868 @default.
- W3179673602 cites W2135087371 @default.
- W3179673602 cites W2145339207 @default.
- W3179673602 cites W2164301707 @default.
- W3179673602 cites W2347129741 @default.
- W3179673602 cites W2478294658 @default.
- W3179673602 cites W2530960271 @default.
- W3179673602 cites W2600236415 @default.
- W3179673602 cites W2606363443 @default.
- W3179673602 cites W2640962932 @default.
- W3179673602 cites W2725862688 @default.
- W3179673602 cites W2746244909 @default.
- W3179673602 cites W2747592475 @default.
- W3179673602 cites W2755202310 @default.
- W3179673602 cites W2766856748 @default.
- W3179673602 cites W2770164889 @default.
- W3179673602 cites W2774159191 @default.
- W3179673602 cites W2774977638 @default.
- W3179673602 cites W2784090786 @default.
- W3179673602 cites W2791537273 @default.
- W3179673602 cites W2792488203 @default.
- W3179673602 cites W2794979247 @default.
- W3179673602 cites W2799915630 @default.
- W3179673602 cites W2883583109 @default.
- W3179673602 cites W2884430236 @default.
- W3179673602 cites W2897291816 @default.
- W3179673602 cites W2905677664 @default.
- W3179673602 cites W2929465105 @default.
- W3179673602 cites W2943147869 @default.
- W3179673602 cites W2946418155 @default.
- W3179673602 cites W2950340451 @default.
- W3179673602 cites W2963784900 @default.
- W3179673602 cites W2964791903 @default.
- W3179673602 cites W2968071222 @default.
- W3179673602 cites W2980932864 @default.
- W3179673602 cites W2990351990 @default.
- W3179673602 cites W2994786560 @default.
- W3179673602 cites W2996102654 @default.
- W3179673602 cites W2997994315 @default.
- W3179673602 cites W3002374369 @default.
- W3179673602 cites W3039055967 @default.
- W3179673602 cites W3091279095 @default.
- W3179673602 cites W3100751385 @default.
- W3179673602 cites W3102693939 @default.
- W3179673602 cites W3104026629 @default.
- W3179673602 cites W3104956673 @default.
- W3179673602 cites W4230189600 @default.
- W3179673602 doi "https://doi.org/10.1038/s41524-021-00535-3" @default.
- W3179673602 hasPublicationYear "2021" @default.
- W3179673602 type Work @default.
- W3179673602 sameAs 3179673602 @default.
- W3179673602 citedByCount "9" @default.
- W3179673602 countsByYear W31796736022021 @default.
- W3179673602 countsByYear W31796736022022 @default.
- W3179673602 countsByYear W31796736022023 @default.
- W3179673602 crossrefType "journal-article" @default.
- W3179673602 hasAuthorship W3179673602A5044477241 @default.
- W3179673602 hasAuthorship W3179673602A5052894521 @default.
- W3179673602 hasAuthorship W3179673602A5058496452 @default.
- W3179673602 hasAuthorship W3179673602A5063758358 @default.
- W3179673602 hasAuthorship W3179673602A5087579275 @default.
- W3179673602 hasAuthorship W3179673602A5091810223 @default.
- W3179673602 hasBestOaLocation W31796736021 @default.
- W3179673602 hasConcept C149635348 @default.
- W3179673602 hasConcept C154945302 @default.
- W3179673602 hasConcept C171250308 @default.
- W3179673602 hasConcept C178790620 @default.
- W3179673602 hasConcept C185592680 @default.
- W3179673602 hasConcept C186060115 @default.
- W3179673602 hasConcept C192562407 @default.
- W3179673602 hasConcept C2780513914 @default.
- W3179673602 hasConcept C41008148 @default.
- W3179673602 hasConcept C44280652 @default.
- W3179673602 hasConcept C57410435 @default.
- W3179673602 hasConcept C86803240 @default.
- W3179673602 hasConcept C97541855 @default.
- W3179673602 hasConceptScore W3179673602C149635348 @default.
- W3179673602 hasConceptScore W3179673602C154945302 @default.
- W3179673602 hasConceptScore W3179673602C171250308 @default.
- W3179673602 hasConceptScore W3179673602C178790620 @default.
- W3179673602 hasConceptScore W3179673602C185592680 @default.
- W3179673602 hasConceptScore W3179673602C186060115 @default.
- W3179673602 hasConceptScore W3179673602C192562407 @default.
- W3179673602 hasConceptScore W3179673602C2780513914 @default.
- W3179673602 hasConceptScore W3179673602C41008148 @default.
- W3179673602 hasConceptScore W3179673602C44280652 @default.