Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179678600> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W3179678600 abstract "<b><sc>Abstract.</sc></b> <b>Loblolly pine is one of the most important forest tree species in the southern U.S. for saw timber production. Its trunk and branch characteristics have a significant impact on yield potential. However, commercially important traits such as trunk straightness, branch angle, and branch diameter are currently quantified by visual grading, which is subjective and low throughput. In this study, the utility of combining stereo 3D imaging and deep learning was evaluated for pine architecture phenotyping. Stereo RGB images and manual measurements of branch diameters, branch angles, and trunk diameters were collected from individual loblolly pine trees of different families in a progeny test. A custom MS-COCO dataset was created by annotating contour polygons of trunk and branches in the images. The dataset was used to fine-tune and test a Mask R-CNN model for the instance segmentation task. Dense and patch-based stereo matching algorithms were used to reconstruct large trunks and thin branches, respectively. The resultant 3D point clouds were further processed to extract branch angle using principal component analysis (PCA), and trunk diameter. High correlation was found for the image-derived branch angle (R<sup>2</sup> = 0.66) and trunk diameter (R<sup>2</sup> = 0.78). The proposed system showed promising potential as a high-throughput precision phenotyping tool for tree architecture characterization of loblolly pine, facilitating the selection of tree architecture that is highly productive and resilient to climate variability and associated severe weather events.</b>" @default.
- W3179678600 created "2021-07-19" @default.
- W3179678600 creator A5002007282 @default.
- W3179678600 creator A5013608783 @default.
- W3179678600 creator A5034656106 @default.
- W3179678600 creator A5036401388 @default.
- W3179678600 creator A5056368421 @default.
- W3179678600 creator A5082419665 @default.
- W3179678600 date "2021-01-01" @default.
- W3179678600 modified "2023-10-16" @default.
- W3179678600 title "Phenotyping of Pine Tree Architecture with Stereo Vision and Deep Learning" @default.
- W3179678600 doi "https://doi.org/10.13031/aim.202100847" @default.
- W3179678600 hasPublicationYear "2021" @default.
- W3179678600 type Work @default.
- W3179678600 sameAs 3179678600 @default.
- W3179678600 citedByCount "0" @default.
- W3179678600 crossrefType "proceedings-article" @default.
- W3179678600 hasAuthorship W3179678600A5002007282 @default.
- W3179678600 hasAuthorship W3179678600A5013608783 @default.
- W3179678600 hasAuthorship W3179678600A5034656106 @default.
- W3179678600 hasAuthorship W3179678600A5036401388 @default.
- W3179678600 hasAuthorship W3179678600A5056368421 @default.
- W3179678600 hasAuthorship W3179678600A5082419665 @default.
- W3179678600 hasConcept C108583219 @default.
- W3179678600 hasConcept C113174947 @default.
- W3179678600 hasConcept C114614502 @default.
- W3179678600 hasConcept C131979681 @default.
- W3179678600 hasConcept C153180895 @default.
- W3179678600 hasConcept C154945302 @default.
- W3179678600 hasConcept C27438332 @default.
- W3179678600 hasConcept C2781197403 @default.
- W3179678600 hasConcept C31972630 @default.
- W3179678600 hasConcept C33923547 @default.
- W3179678600 hasConcept C41008148 @default.
- W3179678600 hasConcept C59822182 @default.
- W3179678600 hasConcept C86803240 @default.
- W3179678600 hasConcept C89600930 @default.
- W3179678600 hasConceptScore W3179678600C108583219 @default.
- W3179678600 hasConceptScore W3179678600C113174947 @default.
- W3179678600 hasConceptScore W3179678600C114614502 @default.
- W3179678600 hasConceptScore W3179678600C131979681 @default.
- W3179678600 hasConceptScore W3179678600C153180895 @default.
- W3179678600 hasConceptScore W3179678600C154945302 @default.
- W3179678600 hasConceptScore W3179678600C27438332 @default.
- W3179678600 hasConceptScore W3179678600C2781197403 @default.
- W3179678600 hasConceptScore W3179678600C31972630 @default.
- W3179678600 hasConceptScore W3179678600C33923547 @default.
- W3179678600 hasConceptScore W3179678600C41008148 @default.
- W3179678600 hasConceptScore W3179678600C59822182 @default.
- W3179678600 hasConceptScore W3179678600C86803240 @default.
- W3179678600 hasConceptScore W3179678600C89600930 @default.
- W3179678600 hasLocation W31796786001 @default.
- W3179678600 hasOpenAccess W3179678600 @default.
- W3179678600 hasPrimaryLocation W31796786001 @default.
- W3179678600 hasRelatedWork W1669643531 @default.
- W3179678600 hasRelatedWork W2005437358 @default.
- W3179678600 hasRelatedWork W2380927352 @default.
- W3179678600 hasRelatedWork W2517104666 @default.
- W3179678600 hasRelatedWork W2766146978 @default.
- W3179678600 hasRelatedWork W2790662084 @default.
- W3179678600 hasRelatedWork W3169001153 @default.
- W3179678600 hasRelatedWork W4211209597 @default.
- W3179678600 hasRelatedWork W4293211451 @default.
- W3179678600 hasRelatedWork W4312098327 @default.
- W3179678600 isParatext "false" @default.
- W3179678600 isRetracted "false" @default.
- W3179678600 magId "3179678600" @default.
- W3179678600 workType "article" @default.