Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179693485> ?p ?o ?g. }
- W3179693485 endingPage "15" @default.
- W3179693485 startingPage "1" @default.
- W3179693485 abstract "Anomaly detection has been known to be an important issue in hyperspectral remote sensing applications. It aims to detect anomalous targets whose spectral signatures are very different from the background pixels. Although many linear detectors have obtained acceptable detection results, the linear model might not be able to describe complex hyperspectral data and could be replaced by nonlinear models. In this article, we investigate the intrinsic nonlinear characteristics of hyperspectral images (HSIs) on basis of the nonlinear mixing models and propose a novel nonlinear hyperspectral anomaly detection method based on kernel theory and union dictionary. First, the global strong anomalies in the scene and the local background pixels are utilized to construct a union dictionary. Then, a nonlinear representation-based anomaly detection model with the constructed union dictionary is designed, in which the nonlinear mixing effect of HSIs is considered. Meanwhile, the kernel theory is exploited to deal with the nonlinear interactions among the atoms in the dictionary. Finally, the anomalous level of a test pixel is determined by the representation coefficients associated with the anomaly dictionary. The proposed method is evaluated on both synthetic and real hyperspectral datasets. Experimental results demonstrate its excellent performance in comparison with linear and nonlinear state-of-the-art anomaly detectors." @default.
- W3179693485 created "2021-07-19" @default.
- W3179693485 creator A5005352038 @default.
- W3179693485 creator A5032699518 @default.
- W3179693485 creator A5059575276 @default.
- W3179693485 creator A5076569259 @default.
- W3179693485 date "2022-01-01" @default.
- W3179693485 modified "2023-10-17" @default.
- W3179693485 title "Kernel-Based Nonlinear Anomaly Detection via Union Dictionary for Hyperspectral Images" @default.
- W3179693485 cites W1957094454 @default.
- W3179693485 cites W1963659868 @default.
- W3179693485 cites W1972344061 @default.
- W3179693485 cites W1977824599 @default.
- W3179693485 cites W1986280275 @default.
- W3179693485 cites W1990953362 @default.
- W3179693485 cites W1991190032 @default.
- W3179693485 cites W2004491663 @default.
- W3179693485 cites W2008924446 @default.
- W3179693485 cites W2010702969 @default.
- W3179693485 cites W2011147915 @default.
- W3179693485 cites W2011315899 @default.
- W3179693485 cites W2017014096 @default.
- W3179693485 cites W2019274094 @default.
- W3179693485 cites W2041100636 @default.
- W3179693485 cites W2042626896 @default.
- W3179693485 cites W2047519171 @default.
- W3179693485 cites W2047870694 @default.
- W3179693485 cites W2067191022 @default.
- W3179693485 cites W2086506050 @default.
- W3179693485 cites W2087263574 @default.
- W3179693485 cites W2088259770 @default.
- W3179693485 cites W2097381359 @default.
- W3179693485 cites W2110802877 @default.
- W3179693485 cites W2116793806 @default.
- W3179693485 cites W2124267685 @default.
- W3179693485 cites W2124463804 @default.
- W3179693485 cites W2137052100 @default.
- W3179693485 cites W2139047226 @default.
- W3179693485 cites W2147042314 @default.
- W3179693485 cites W2163129097 @default.
- W3179693485 cites W2165447611 @default.
- W3179693485 cites W2295576075 @default.
- W3179693485 cites W2303627748 @default.
- W3179693485 cites W2497075055 @default.
- W3179693485 cites W2549011583 @default.
- W3179693485 cites W2549107715 @default.
- W3179693485 cites W2555818261 @default.
- W3179693485 cites W2586973374 @default.
- W3179693485 cites W2740976805 @default.
- W3179693485 cites W2743255627 @default.
- W3179693485 cites W2782517596 @default.
- W3179693485 cites W2811009023 @default.
- W3179693485 cites W2900199428 @default.
- W3179693485 cites W2955002903 @default.
- W3179693485 cites W2972480129 @default.
- W3179693485 cites W3021998006 @default.
- W3179693485 cites W3038851053 @default.
- W3179693485 cites W3122463936 @default.
- W3179693485 cites W4233760599 @default.
- W3179693485 cites W4235713725 @default.
- W3179693485 cites W4250589301 @default.
- W3179693485 cites W4291236916 @default.
- W3179693485 doi "https://doi.org/10.1109/tgrs.2021.3093591" @default.
- W3179693485 hasPublicationYear "2022" @default.
- W3179693485 type Work @default.
- W3179693485 sameAs 3179693485 @default.
- W3179693485 citedByCount "4" @default.
- W3179693485 countsByYear W31796934852022 @default.
- W3179693485 crossrefType "journal-article" @default.
- W3179693485 hasAuthorship W3179693485A5005352038 @default.
- W3179693485 hasAuthorship W3179693485A5032699518 @default.
- W3179693485 hasAuthorship W3179693485A5059575276 @default.
- W3179693485 hasAuthorship W3179693485A5076569259 @default.
- W3179693485 hasConcept C11413529 @default.
- W3179693485 hasConcept C114614502 @default.
- W3179693485 hasConcept C121332964 @default.
- W3179693485 hasConcept C122280245 @default.
- W3179693485 hasConcept C12267149 @default.
- W3179693485 hasConcept C12997251 @default.
- W3179693485 hasConcept C153180895 @default.
- W3179693485 hasConcept C154945302 @default.
- W3179693485 hasConcept C158622935 @default.
- W3179693485 hasConcept C159078339 @default.
- W3179693485 hasConcept C160633673 @default.
- W3179693485 hasConcept C17744445 @default.
- W3179693485 hasConcept C199539241 @default.
- W3179693485 hasConcept C26873012 @default.
- W3179693485 hasConcept C2776359362 @default.
- W3179693485 hasConcept C31972630 @default.
- W3179693485 hasConcept C33923547 @default.
- W3179693485 hasConcept C41008148 @default.
- W3179693485 hasConcept C62520636 @default.
- W3179693485 hasConcept C739882 @default.
- W3179693485 hasConcept C74193536 @default.
- W3179693485 hasConcept C76155785 @default.
- W3179693485 hasConcept C94625758 @default.
- W3179693485 hasConcept C94915269 @default.
- W3179693485 hasConceptScore W3179693485C11413529 @default.