Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179745917> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W3179745917 abstract "Abstract Background: Analysing distributed medical data is challenging because of data sensitivity and various regulations to access and combine data. Some privacy-preserving methods are known for analyzing horizontally-partitioned data, where different organisations have similar data on disjoint sets of people. Technically more challenging is the case of vertically-partitioned data, dealing with data on overlapping sets of people. We use an emerging technology based on cryptographic techniques called secure multi-party computation (MPC), and apply it to perform privacy-preserving survival analysis on vertically-distributed data by means of the Cox proportional hazards (CPH) model. Both MPC and CPH are explained. Methods: We use a Newton-Raphson solver to securely train the CPH model with MPC, jointly with all data holders, without revealing any sensitive data. In order to securely compute the log-partial likelihood in each iteration, we run into several technical challenges to preserve the efficiency and security of our solution. To tackle these technical challenges, we generalize a cryptographic protocol for securely computing the inverse of the Hessian matrix and develop a new method for securely computing exponentiations. A theoretical complexity estimate is given to get insight into the computational and communication effort that is needed. Results: Our secure solution is implemented in a setting with three different machines, each presenting a different data holder, which can communicate through the internet. The MPyC platform is used for implementing this privacy-preserving solution to obtain the CPH model. We test the accuracy and computation time of our methods on three standard benchmark survival datasets. We identify future work to make our solution more efficient. Conclusions: Our secure solution is comparable with the standard, non-secure solver in terms of accuracy and convergence speed. The computation time is considerably larger, although the theoretical complexity is still cubic in the number of covariates and quadratic in the number of subjects. We conclude that this is a promising way of performing parametric survival analysis on vertically-distributed medical data, while realising high level of security and privacy." @default.
- W3179745917 created "2021-07-19" @default.
- W3179745917 creator A5011847040 @default.
- W3179745917 creator A5032557386 @default.
- W3179745917 creator A5036495764 @default.
- W3179745917 creator A5059641753 @default.
- W3179745917 creator A5082927171 @default.
- W3179745917 date "2021-07-06" @default.
- W3179745917 modified "2023-09-27" @default.
- W3179745917 title "Accurate Training of The Cox Proportional Hazards Model on Vertically-Partitioned Data While Preserving Privacy" @default.
- W3179745917 doi "https://doi.org/10.21203/rs.3.rs-602219/v1" @default.
- W3179745917 hasPublicationYear "2021" @default.
- W3179745917 type Work @default.
- W3179745917 sameAs 3179745917 @default.
- W3179745917 citedByCount "0" @default.
- W3179745917 crossrefType "posted-content" @default.
- W3179745917 hasAuthorship W3179745917A5011847040 @default.
- W3179745917 hasAuthorship W3179745917A5032557386 @default.
- W3179745917 hasAuthorship W3179745917A5036495764 @default.
- W3179745917 hasAuthorship W3179745917A5059641753 @default.
- W3179745917 hasAuthorship W3179745917A5082927171 @default.
- W3179745917 hasBestOaLocation W31797459171 @default.
- W3179745917 hasConcept C11413529 @default.
- W3179745917 hasConcept C114614502 @default.
- W3179745917 hasConcept C123201435 @default.
- W3179745917 hasConcept C124101348 @default.
- W3179745917 hasConcept C13280743 @default.
- W3179745917 hasConcept C178489894 @default.
- W3179745917 hasConcept C18396474 @default.
- W3179745917 hasConcept C185798385 @default.
- W3179745917 hasConcept C203616005 @default.
- W3179745917 hasConcept C205649164 @default.
- W3179745917 hasConcept C28826006 @default.
- W3179745917 hasConcept C33923547 @default.
- W3179745917 hasConcept C38652104 @default.
- W3179745917 hasConcept C41008148 @default.
- W3179745917 hasConcept C45340560 @default.
- W3179745917 hasConcept C45374587 @default.
- W3179745917 hasConceptScore W3179745917C11413529 @default.
- W3179745917 hasConceptScore W3179745917C114614502 @default.
- W3179745917 hasConceptScore W3179745917C123201435 @default.
- W3179745917 hasConceptScore W3179745917C124101348 @default.
- W3179745917 hasConceptScore W3179745917C13280743 @default.
- W3179745917 hasConceptScore W3179745917C178489894 @default.
- W3179745917 hasConceptScore W3179745917C18396474 @default.
- W3179745917 hasConceptScore W3179745917C185798385 @default.
- W3179745917 hasConceptScore W3179745917C203616005 @default.
- W3179745917 hasConceptScore W3179745917C205649164 @default.
- W3179745917 hasConceptScore W3179745917C28826006 @default.
- W3179745917 hasConceptScore W3179745917C33923547 @default.
- W3179745917 hasConceptScore W3179745917C38652104 @default.
- W3179745917 hasConceptScore W3179745917C41008148 @default.
- W3179745917 hasConceptScore W3179745917C45340560 @default.
- W3179745917 hasConceptScore W3179745917C45374587 @default.
- W3179745917 hasLocation W31797459171 @default.
- W3179745917 hasLocation W31797459172 @default.
- W3179745917 hasLocation W31797459173 @default.
- W3179745917 hasOpenAccess W3179745917 @default.
- W3179745917 hasPrimaryLocation W31797459171 @default.
- W3179745917 hasRelatedWork W1451223395 @default.
- W3179745917 hasRelatedWork W1508764330 @default.
- W3179745917 hasRelatedWork W2032782645 @default.
- W3179745917 hasRelatedWork W2125679084 @default.
- W3179745917 hasRelatedWork W2206791037 @default.
- W3179745917 hasRelatedWork W2394904351 @default.
- W3179745917 hasRelatedWork W2539281752 @default.
- W3179745917 hasRelatedWork W2782824540 @default.
- W3179745917 hasRelatedWork W2808844937 @default.
- W3179745917 hasRelatedWork W2953041362 @default.
- W3179745917 isParatext "false" @default.
- W3179745917 isRetracted "false" @default.
- W3179745917 magId "3179745917" @default.
- W3179745917 workType "article" @default.