Matches in SemOpenAlex for { <https://semopenalex.org/work/W3179882783> ?p ?o ?g. }
- W3179882783 endingPage "e29328" @default.
- W3179882783 startingPage "e29328" @default.
- W3179882783 abstract "Previous studies have shown promising results in identifying individuals with autism spectrum disorder (ASD) by applying machine learning (ML) to eye-tracking data collected while participants viewed varying images (ie, pictures, videos, and web pages). Although gaze behavior is known to differ between face-to-face interaction and image-viewing tasks, no study has investigated whether eye-tracking data from face-to-face conversations can also accurately identify individuals with ASD.The objective of this study was to examine whether eye-tracking data from face-to-face conversations could classify children with ASD and typical development (TD). We further investigated whether combining features on visual fixation and length of conversation would achieve better classification performance.Eye tracking was performed on children with ASD and TD while they were engaged in face-to-face conversations (including 4 conversational sessions) with an interviewer. By implementing forward feature selection, four ML classifiers were used to determine the maximum classification accuracy and the corresponding features: support vector machine (SVM), linear discriminant analysis, decision tree, and random forest.A maximum classification accuracy of 92.31% was achieved with the SVM classifier by combining features on both visual fixation and session length. The classification accuracy of combined features was higher than that obtained using visual fixation features (maximum classification accuracy 84.62%) or session length (maximum classification accuracy 84.62%) alone.Eye-tracking data from face-to-face conversations could accurately classify children with ASD and TD, suggesting that ASD might be objectively screened in everyday social interactions. However, these results will need to be validated with a larger sample of individuals with ASD (varying in severity and balanced sex ratio) using data collected from different modalities (eg, eye tracking, kinematic, electroencephalogram, and neuroimaging). In addition, individuals with other clinical conditions (eg, developmental delay and attention deficit hyperactivity disorder) should be included in similar ML studies for detecting ASD." @default.
- W3179882783 created "2021-07-19" @default.
- W3179882783 creator A5000313452 @default.
- W3179882783 creator A5019764471 @default.
- W3179882783 creator A5025222082 @default.
- W3179882783 creator A5028253256 @default.
- W3179882783 creator A5038165954 @default.
- W3179882783 creator A5068850333 @default.
- W3179882783 date "2021-08-26" @default.
- W3179882783 modified "2023-10-05" @default.
- W3179882783 title "Classification of Children With Autism and Typical Development Using Eye-Tracking Data From Face-to-Face Conversations: Machine Learning Model Development and Performance Evaluation" @default.
- W3179882783 cites W1587461800 @default.
- W3179882783 cites W1770257809 @default.
- W3179882783 cites W1970401598 @default.
- W3179882783 cites W1971667938 @default.
- W3179882783 cites W1988488214 @default.
- W3179882783 cites W1990245273 @default.
- W3179882783 cites W2006591500 @default.
- W3179882783 cites W2011286893 @default.
- W3179882783 cites W2032435294 @default.
- W3179882783 cites W2036837996 @default.
- W3179882783 cites W2057677419 @default.
- W3179882783 cites W2084794942 @default.
- W3179882783 cites W2085724875 @default.
- W3179882783 cites W2096704400 @default.
- W3179882783 cites W2111874514 @default.
- W3179882783 cites W2118734692 @default.
- W3179882783 cites W2122934497 @default.
- W3179882783 cites W2140183946 @default.
- W3179882783 cites W2146328480 @default.
- W3179882783 cites W2150020283 @default.
- W3179882783 cites W2328587688 @default.
- W3179882783 cites W2514823429 @default.
- W3179882783 cites W2567221102 @default.
- W3179882783 cites W2612893437 @default.
- W3179882783 cites W2741945049 @default.
- W3179882783 cites W2756425885 @default.
- W3179882783 cites W2774716223 @default.
- W3179882783 cites W2808107215 @default.
- W3179882783 cites W2876781188 @default.
- W3179882783 cites W2887277944 @default.
- W3179882783 cites W2911941403 @default.
- W3179882783 cites W2946796172 @default.
- W3179882783 cites W2971949847 @default.
- W3179882783 cites W2983091501 @default.
- W3179882783 cites W3013901951 @default.
- W3179882783 cites W3020824831 @default.
- W3179882783 cites W3021309133 @default.
- W3179882783 cites W3027342555 @default.
- W3179882783 cites W3035825181 @default.
- W3179882783 cites W3099367322 @default.
- W3179882783 cites W3158369109 @default.
- W3179882783 cites W3160465506 @default.
- W3179882783 doi "https://doi.org/10.2196/29328" @default.
- W3179882783 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8440949" @default.
- W3179882783 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34435957" @default.
- W3179882783 hasPublicationYear "2021" @default.
- W3179882783 type Work @default.
- W3179882783 sameAs 3179882783 @default.
- W3179882783 citedByCount "21" @default.
- W3179882783 countsByYear W31798827832021 @default.
- W3179882783 countsByYear W31798827832022 @default.
- W3179882783 countsByYear W31798827832023 @default.
- W3179882783 crossrefType "journal-article" @default.
- W3179882783 hasAuthorship W3179882783A5000313452 @default.
- W3179882783 hasAuthorship W3179882783A5019764471 @default.
- W3179882783 hasAuthorship W3179882783A5025222082 @default.
- W3179882783 hasAuthorship W3179882783A5028253256 @default.
- W3179882783 hasAuthorship W3179882783A5038165954 @default.
- W3179882783 hasAuthorship W3179882783A5068850333 @default.
- W3179882783 hasBestOaLocation W31798827831 @default.
- W3179882783 hasConcept C119857082 @default.
- W3179882783 hasConcept C12267149 @default.
- W3179882783 hasConcept C138496976 @default.
- W3179882783 hasConcept C144024400 @default.
- W3179882783 hasConcept C146249460 @default.
- W3179882783 hasConcept C149923435 @default.
- W3179882783 hasConcept C153180895 @default.
- W3179882783 hasConcept C154945302 @default.
- W3179882783 hasConcept C15744967 @default.
- W3179882783 hasConcept C169258074 @default.
- W3179882783 hasConcept C205778803 @default.
- W3179882783 hasConcept C2778538070 @default.
- W3179882783 hasConcept C2779916870 @default.
- W3179882783 hasConcept C2908647359 @default.
- W3179882783 hasConcept C31510193 @default.
- W3179882783 hasConcept C31972630 @default.
- W3179882783 hasConcept C41008148 @default.
- W3179882783 hasConcept C4641261 @default.
- W3179882783 hasConcept C56461940 @default.
- W3179882783 hasConcept C69738355 @default.
- W3179882783 hasConcept C95623464 @default.
- W3179882783 hasConcept C98907195 @default.
- W3179882783 hasConceptScore W3179882783C119857082 @default.
- W3179882783 hasConceptScore W3179882783C12267149 @default.
- W3179882783 hasConceptScore W3179882783C138496976 @default.
- W3179882783 hasConceptScore W3179882783C144024400 @default.
- W3179882783 hasConceptScore W3179882783C146249460 @default.