Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180000715> ?p ?o ?g. }
- W3180000715 endingPage "100108" @default.
- W3180000715 startingPage "100108" @default.
- W3180000715 abstract "Fluoride (F) in groundwater (GW) in excess of 1.5 mg/L is a globally distributed problem impacting the health of hundreds of millions of people, many of whom cannot access centralized treatment infrastructure. Animal (e.g., cow) bone char has received emerging interest as a low-cost F sorbent for use in decentralized household and community water treatment. Pilot column tests using full-sized granular bone char particles can be used to assess treatment performance of fixed-bed contactors, but are costly, time consuming, and require large amounts of test water. Rapid small-scale column tests (RSSCTs) can be used to simulate F uptake in bone char contactors if the relationship between F intraparticle diffusion kinetics and bone char particle size is known. Two common approaches to the RSSCT assume either constant (CD) or linear proportional (PD) sorbate diffusivity as a function of sorbent particle size. This study used experimentally determined pseudo-equilibrium and kinetic F sorption data in model groundwater as inputs to the homogeneous surface diffusion model (HSDM) to determine F intraparticle diffusion coefficients for different-sized bone char particles, and to fit RSSCT and pilot column breakthrough data to evaluate CD and PD approaches. Results of this study, corroborated by incorporation of additional literature data, indicate approximately linearly proportional diffusivity of F as a function of bone char particle size. Congruently, the PD-RSSCT approach provided a superior simulation of pilot column F breakthrough compared to the CD-RSSCT. PD-RSSCT breakthrough data closely matched pilot breakthrough on a scaled service time basis up to around 500 bed volumes, corresponding to a relative F breakthrough of about 40%, and provided a slightly conservative indicator of F removal thereafter. The PD-RSSCT was compared with a hybrid modeling and empirical workflow using the HSDM with experimentally determined pseudo-equilibrium and kinetic parameter inputs as time-and-cost-saving approaches to evaluating full-sized groundwater treatment system performance. This comparison and a sensitivity analysis of HSDM input parameters used in the hybrid workflow indicated that greater precision can be obtained using the PD-RSSCT." @default.
- W3180000715 created "2021-07-19" @default.
- W3180000715 creator A5026539639 @default.
- W3180000715 creator A5079516645 @default.
- W3180000715 date "2021-08-01" @default.
- W3180000715 modified "2023-09-23" @default.
- W3180000715 title "Modeling and experimental approaches for determining fluoride diffusion kinetics in bone char sorbent and prediction of packed-bed groundwater defluoridator performance" @default.
- W3180000715 cites W1800662890 @default.
- W3180000715 cites W1969914232 @default.
- W3180000715 cites W1977949726 @default.
- W3180000715 cites W1994504253 @default.
- W3180000715 cites W1997582973 @default.
- W3180000715 cites W2002023126 @default.
- W3180000715 cites W2009123571 @default.
- W3180000715 cites W2015439275 @default.
- W3180000715 cites W2031582463 @default.
- W3180000715 cites W2033728334 @default.
- W3180000715 cites W2049913593 @default.
- W3180000715 cites W2050940476 @default.
- W3180000715 cites W2053742566 @default.
- W3180000715 cites W2054916454 @default.
- W3180000715 cites W2072331739 @default.
- W3180000715 cites W2079654126 @default.
- W3180000715 cites W2089482683 @default.
- W3180000715 cites W2119043667 @default.
- W3180000715 cites W2189815302 @default.
- W3180000715 cites W2485435277 @default.
- W3180000715 cites W2546865641 @default.
- W3180000715 cites W2774055426 @default.
- W3180000715 cites W2800365861 @default.
- W3180000715 cites W2800875879 @default.
- W3180000715 cites W2896407063 @default.
- W3180000715 cites W2938491419 @default.
- W3180000715 cites W2946221415 @default.
- W3180000715 cites W3024232812 @default.
- W3180000715 doi "https://doi.org/10.1016/j.wroa.2021.100108" @default.
- W3180000715 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8334723" @default.
- W3180000715 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34381986" @default.
- W3180000715 hasPublicationYear "2021" @default.
- W3180000715 type Work @default.
- W3180000715 sameAs 3180000715 @default.
- W3180000715 citedByCount "6" @default.
- W3180000715 countsByYear W31800007152022 @default.
- W3180000715 countsByYear W31800007152023 @default.
- W3180000715 crossrefType "journal-article" @default.
- W3180000715 hasAuthorship W3180000715A5026539639 @default.
- W3180000715 hasAuthorship W3180000715A5079516645 @default.
- W3180000715 hasBestOaLocation W31800007151 @default.
- W3180000715 hasConcept C111368507 @default.
- W3180000715 hasConcept C121332964 @default.
- W3180000715 hasConcept C127313418 @default.
- W3180000715 hasConcept C127413603 @default.
- W3180000715 hasConcept C150394285 @default.
- W3180000715 hasConcept C178790620 @default.
- W3180000715 hasConcept C185592680 @default.
- W3180000715 hasConcept C187320778 @default.
- W3180000715 hasConcept C187530423 @default.
- W3180000715 hasConcept C192562407 @default.
- W3180000715 hasConcept C199289684 @default.
- W3180000715 hasConcept C2777899863 @default.
- W3180000715 hasConcept C2778517922 @default.
- W3180000715 hasConcept C2779970684 @default.
- W3180000715 hasConcept C36759035 @default.
- W3180000715 hasConcept C42360764 @default.
- W3180000715 hasConcept C43617362 @default.
- W3180000715 hasConcept C58445606 @default.
- W3180000715 hasConcept C69357855 @default.
- W3180000715 hasConcept C76177295 @default.
- W3180000715 hasConcept C97355855 @default.
- W3180000715 hasConceptScore W3180000715C111368507 @default.
- W3180000715 hasConceptScore W3180000715C121332964 @default.
- W3180000715 hasConceptScore W3180000715C127313418 @default.
- W3180000715 hasConceptScore W3180000715C127413603 @default.
- W3180000715 hasConceptScore W3180000715C150394285 @default.
- W3180000715 hasConceptScore W3180000715C178790620 @default.
- W3180000715 hasConceptScore W3180000715C185592680 @default.
- W3180000715 hasConceptScore W3180000715C187320778 @default.
- W3180000715 hasConceptScore W3180000715C187530423 @default.
- W3180000715 hasConceptScore W3180000715C192562407 @default.
- W3180000715 hasConceptScore W3180000715C199289684 @default.
- W3180000715 hasConceptScore W3180000715C2777899863 @default.
- W3180000715 hasConceptScore W3180000715C2778517922 @default.
- W3180000715 hasConceptScore W3180000715C2779970684 @default.
- W3180000715 hasConceptScore W3180000715C36759035 @default.
- W3180000715 hasConceptScore W3180000715C42360764 @default.
- W3180000715 hasConceptScore W3180000715C43617362 @default.
- W3180000715 hasConceptScore W3180000715C58445606 @default.
- W3180000715 hasConceptScore W3180000715C69357855 @default.
- W3180000715 hasConceptScore W3180000715C76177295 @default.
- W3180000715 hasConceptScore W3180000715C97355855 @default.
- W3180000715 hasLocation W31800007151 @default.
- W3180000715 hasLocation W31800007152 @default.
- W3180000715 hasLocation W31800007153 @default.
- W3180000715 hasOpenAccess W3180000715 @default.
- W3180000715 hasPrimaryLocation W31800007151 @default.
- W3180000715 hasRelatedWork W1543548431 @default.
- W3180000715 hasRelatedWork W1762713868 @default.
- W3180000715 hasRelatedWork W1966610454 @default.