Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180062783> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3180062783 abstract "Numerous studies have demonstrated the effectiveness of machine learning techniques in application to network intrusion detection. And yet, the adoption of machine learning for securing large-scale network environments remains challenging. The community acknowledges that network security presents unique challenges for machine learning, and the lack of training data representative of modern traffic remains one of the most intractable issues. New attempts are continuously made to develop high quality benchmark datasets and proper data collection methodologies. The CICIDS2017 dataset is one of the recent results, created to meet the demanding criterion of representativeness for network intrusion detection. In this paper we revisit CICIDS2017 and its data collection pipeline and analyze correctness, validity and overall utility of the dataset for the learning task. During this in-depth analysis, we uncover a series of problems with traffic generation, flow construction, feature extraction and labelling that severely affect the aforementioned properties. We investigate the causes of these shortcomings and address most of them by applying an improved data processing methodology. As a result, more than 20 percent of original traffic traces are reconstructed or relabelled. Machine learning benchmarks on the final dataset demonstrate significant improvements. Our study exemplifies how data collection issues may have enormous impact on model evaluation and provides recommendations for their anticipation and prevention." @default.
- W3180062783 created "2021-07-19" @default.
- W3180062783 creator A5024905721 @default.
- W3180062783 creator A5034256261 @default.
- W3180062783 creator A5054031138 @default.
- W3180062783 date "2021-05-01" @default.
- W3180062783 modified "2023-10-17" @default.
- W3180062783 title "Troubleshooting an Intrusion Detection Dataset: the CICIDS2017 Case Study" @default.
- W3180062783 cites W2597441556 @default.
- W3180062783 cites W2732560875 @default.
- W3180062783 cites W2747144285 @default.
- W3180062783 cites W2789828921 @default.
- W3180062783 cites W2924689635 @default.
- W3180062783 cites W2995671208 @default.
- W3180062783 cites W3033213260 @default.
- W3180062783 cites W3041629534 @default.
- W3180062783 cites W3043530913 @default.
- W3180062783 cites W3108630703 @default.
- W3180062783 doi "https://doi.org/10.1109/spw53761.2021.00009" @default.
- W3180062783 hasPublicationYear "2021" @default.
- W3180062783 type Work @default.
- W3180062783 sameAs 3180062783 @default.
- W3180062783 citedByCount "25" @default.
- W3180062783 countsByYear W31800627832020 @default.
- W3180062783 countsByYear W31800627832021 @default.
- W3180062783 countsByYear W31800627832022 @default.
- W3180062783 countsByYear W31800627832023 @default.
- W3180062783 crossrefType "proceedings-article" @default.
- W3180062783 hasAuthorship W3180062783A5024905721 @default.
- W3180062783 hasAuthorship W3180062783A5034256261 @default.
- W3180062783 hasAuthorship W3180062783A5054031138 @default.
- W3180062783 hasBestOaLocation W31800627832 @default.
- W3180062783 hasConcept C10551718 @default.
- W3180062783 hasConcept C105795698 @default.
- W3180062783 hasConcept C111919701 @default.
- W3180062783 hasConcept C119857082 @default.
- W3180062783 hasConcept C124101348 @default.
- W3180062783 hasConcept C13280743 @default.
- W3180062783 hasConcept C133462117 @default.
- W3180062783 hasConcept C147494362 @default.
- W3180062783 hasConcept C154945302 @default.
- W3180062783 hasConcept C185798385 @default.
- W3180062783 hasConcept C199360897 @default.
- W3180062783 hasConcept C205649164 @default.
- W3180062783 hasConcept C33923547 @default.
- W3180062783 hasConcept C35525427 @default.
- W3180062783 hasConcept C41008148 @default.
- W3180062783 hasConcept C43521106 @default.
- W3180062783 hasConcept C55439883 @default.
- W3180062783 hasConceptScore W3180062783C10551718 @default.
- W3180062783 hasConceptScore W3180062783C105795698 @default.
- W3180062783 hasConceptScore W3180062783C111919701 @default.
- W3180062783 hasConceptScore W3180062783C119857082 @default.
- W3180062783 hasConceptScore W3180062783C124101348 @default.
- W3180062783 hasConceptScore W3180062783C13280743 @default.
- W3180062783 hasConceptScore W3180062783C133462117 @default.
- W3180062783 hasConceptScore W3180062783C147494362 @default.
- W3180062783 hasConceptScore W3180062783C154945302 @default.
- W3180062783 hasConceptScore W3180062783C185798385 @default.
- W3180062783 hasConceptScore W3180062783C199360897 @default.
- W3180062783 hasConceptScore W3180062783C205649164 @default.
- W3180062783 hasConceptScore W3180062783C33923547 @default.
- W3180062783 hasConceptScore W3180062783C35525427 @default.
- W3180062783 hasConceptScore W3180062783C41008148 @default.
- W3180062783 hasConceptScore W3180062783C43521106 @default.
- W3180062783 hasConceptScore W3180062783C55439883 @default.
- W3180062783 hasFunder F4320322308 @default.
- W3180062783 hasLocation W31800627831 @default.
- W3180062783 hasLocation W31800627832 @default.
- W3180062783 hasOpenAccess W3180062783 @default.
- W3180062783 hasPrimaryLocation W31800627831 @default.
- W3180062783 hasRelatedWork W1581002732 @default.
- W3180062783 hasRelatedWork W1975233362 @default.
- W3180062783 hasRelatedWork W2005364185 @default.
- W3180062783 hasRelatedWork W2095438878 @default.
- W3180062783 hasRelatedWork W2347501756 @default.
- W3180062783 hasRelatedWork W2366221835 @default.
- W3180062783 hasRelatedWork W2384557929 @default.
- W3180062783 hasRelatedWork W2387368785 @default.
- W3180062783 hasRelatedWork W3123920941 @default.
- W3180062783 hasRelatedWork W4285256783 @default.
- W3180062783 isParatext "false" @default.
- W3180062783 isRetracted "false" @default.
- W3180062783 magId "3180062783" @default.
- W3180062783 workType "article" @default.