Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180078615> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3180078615 endingPage "1698" @default.
- W3180078615 startingPage "1698" @default.
- W3180078615 abstract "1698 Objectives: Lung ventilation/perfusion scintigraphy is routinely performed to evaluate for lung function prior to transplant along with computed tomography (CT) of the chest and spirometry to aid surgical planning1. Lung scintigraphy in the context of pre-operative evaluation is beneficial as it provides an estimation of lung function, evaluates cardiac shunts, and can detect chronic thromboembolic pulmonary hypertension, this identifying the more diseased lung2. This is especially important in the setting of bilateral lung transplant as it allows the surgeon to determine which lung should be transplanted first3 in single lung and lobar transplantation. Lung transplantation is traditionally performed in children and adults with severe end-stage lung disease (e.g. Chronic Obstructive Pulmonary Disease (COPD) and pulmonary fibrosis) and are increasing in the context of improved life expectancy and increasing organ donor scarcity4,5. In response to this Siemens has developed a fully automatic research prototype algorithm for lung analysis called LungVQ6 that uses artificial intelligence to assist with accurately identifying pulmonary lobes for pre-operative perfusion imaging. This study describes the first clinical experience of this software. Methods: Three patients who were being evaluated for lung transplant underwent perfusion SPECT (Single Photon Emission Computed Tomography)/CT as per departmental protocol with Tc99m- macro-aggregated albumin (MAA) (4mCi/148MBq intravenous) on a GE Optima scanner. “Pseudoplanar” images were created from SPECT data, with quantification of perfusion in anterior and posterior projection of both lungs, using the geometric mean 2D analysis (automatic GE software using standard 6-lobe algorithm that splits each lung in to three sections), providing radiotracer activity in counts and percentage. Concurrently, the novel Siemens LungVQ algorithm was applied on the same data to perform a 3-D analysis using a 5-lobe segmentation method and the results were compared to the standard 2-D analysis. Results: Both standard geometric mean analysis and the Siemens LungVQ algorithm demonstrated equivalent total percentage of MAA radiotracer activity in both lungs (p=0.314) (Figure 1). However Siemens LungVQ algorithm additionally provided lobar volumes and accurately identified pulmonary fissures and thus lobar boundaries as validated by CT findings. This was reiterated by the significant difference in perfusion findings of the right upper (p=0.039) and right middle (p=0.0004) lobes, which did correspond to the change in calculated lobar size/volume. To note, the CT data provided to the Siemens LungVQ algorithm was 2.5mm thick slices while recommended slice size is less than 2 mm. The recommended CT kernel is B40 while the data from the GE Optima scanner used a smoother kernel. Study interpretation was also limited by breathing artifacts which may have resulted in segmentation artifacts.Conclusion: The MAA percentage activity values calculated from perfusion SPECT/CT using the standard GE method and the novel Siemens LungVQ algorithm were similar. The Siemens LungVQ algorithm also correctly identified pulmonary lobes, which may assist in pre- transplant workup especially in lobar lung transplantation. Pending further validation in a larger cohort of patients, the Siemens LungVQ algorithm could guide better identification of patients for transplantation and the most appropriate surgical approach." @default.
- W3180078615 created "2021-07-19" @default.
- W3180078615 creator A5009187601 @default.
- W3180078615 creator A5009212538 @default.
- W3180078615 creator A5034939491 @default.
- W3180078615 creator A5036798940 @default.
- W3180078615 creator A5042868146 @default.
- W3180078615 creator A5045784221 @default.
- W3180078615 creator A5058630665 @default.
- W3180078615 creator A5059412974 @default.
- W3180078615 creator A5088812321 @default.
- W3180078615 date "2021-05-01" @default.
- W3180078615 modified "2023-09-26" @default.
- W3180078615 title "Artificial Intelligence based segmental quantification of pulmonary perfusion for pre-transplant workup." @default.
- W3180078615 hasPublicationYear "2021" @default.
- W3180078615 type Work @default.
- W3180078615 sameAs 3180078615 @default.
- W3180078615 citedByCount "0" @default.
- W3180078615 crossrefType "journal-article" @default.
- W3180078615 hasAuthorship W3180078615A5009187601 @default.
- W3180078615 hasAuthorship W3180078615A5009212538 @default.
- W3180078615 hasAuthorship W3180078615A5034939491 @default.
- W3180078615 hasAuthorship W3180078615A5036798940 @default.
- W3180078615 hasAuthorship W3180078615A5042868146 @default.
- W3180078615 hasAuthorship W3180078615A5045784221 @default.
- W3180078615 hasAuthorship W3180078615A5058630665 @default.
- W3180078615 hasAuthorship W3180078615A5059412974 @default.
- W3180078615 hasAuthorship W3180078615A5088812321 @default.
- W3180078615 hasConcept C126322002 @default.
- W3180078615 hasConcept C126838900 @default.
- W3180078615 hasConcept C146957229 @default.
- W3180078615 hasConcept C151730666 @default.
- W3180078615 hasConcept C2776780178 @default.
- W3180078615 hasConcept C2777714996 @default.
- W3180078615 hasConcept C2779343474 @default.
- W3180078615 hasConcept C2781448352 @default.
- W3180078615 hasConcept C2989005 @default.
- W3180078615 hasConcept C71924100 @default.
- W3180078615 hasConcept C75603125 @default.
- W3180078615 hasConcept C86803240 @default.
- W3180078615 hasConceptScore W3180078615C126322002 @default.
- W3180078615 hasConceptScore W3180078615C126838900 @default.
- W3180078615 hasConceptScore W3180078615C146957229 @default.
- W3180078615 hasConceptScore W3180078615C151730666 @default.
- W3180078615 hasConceptScore W3180078615C2776780178 @default.
- W3180078615 hasConceptScore W3180078615C2777714996 @default.
- W3180078615 hasConceptScore W3180078615C2779343474 @default.
- W3180078615 hasConceptScore W3180078615C2781448352 @default.
- W3180078615 hasConceptScore W3180078615C2989005 @default.
- W3180078615 hasConceptScore W3180078615C71924100 @default.
- W3180078615 hasConceptScore W3180078615C75603125 @default.
- W3180078615 hasConceptScore W3180078615C86803240 @default.
- W3180078615 hasLocation W31800786151 @default.
- W3180078615 hasOpenAccess W3180078615 @default.
- W3180078615 hasPrimaryLocation W31800786151 @default.
- W3180078615 hasRelatedWork W1587311708 @default.
- W3180078615 hasRelatedWork W1968560891 @default.
- W3180078615 hasRelatedWork W1975156799 @default.
- W3180078615 hasRelatedWork W2015465540 @default.
- W3180078615 hasRelatedWork W2159913119 @default.
- W3180078615 hasRelatedWork W2193890200 @default.
- W3180078615 hasRelatedWork W2272491037 @default.
- W3180078615 hasRelatedWork W2388618546 @default.
- W3180078615 hasRelatedWork W2418534063 @default.
- W3180078615 hasRelatedWork W2535725205 @default.
- W3180078615 hasRelatedWork W2554527380 @default.
- W3180078615 hasRelatedWork W2586202918 @default.
- W3180078615 hasRelatedWork W2606642892 @default.
- W3180078615 hasRelatedWork W2788481025 @default.
- W3180078615 hasRelatedWork W2810251918 @default.
- W3180078615 hasRelatedWork W2981469475 @default.
- W3180078615 hasRelatedWork W3094926038 @default.
- W3180078615 hasRelatedWork W3183195668 @default.
- W3180078615 hasRelatedWork W3189311349 @default.
- W3180078615 hasRelatedWork W85573844 @default.
- W3180078615 hasVolume "62" @default.
- W3180078615 isParatext "false" @default.
- W3180078615 isRetracted "false" @default.
- W3180078615 magId "3180078615" @default.
- W3180078615 workType "article" @default.