Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180171545> ?p ?o ?g. }
- W3180171545 endingPage "7323" @default.
- W3180171545 startingPage "7310" @default.
- W3180171545 abstract "There are various types and distributions of noise in hyperspectral images. However, the existing classification models are vulnerable to noise in the data. To improve the robustness of the classification models, a novel hyperspectral image classification model is proposed, named triple-regularized latent subspace discriminative regression (TRLSDR). The core idea of TRLSDR is to add a latent subspace to the standard discriminative least squares regression model to extract high-order features from the visual space by undercomplete autoencoder, and then use clean data for classification. Three regularizers are introduced in this process: Tikhonov regularizer is used to avoid overfitting; Laplacian regularizer is used to capture the neighborhood relationship; and low-rank regularizer is used to alleviate the error of Laplacian matrix construction caused by noise in original samples. We designed experiments on five hyperspectral image datasets and the results show that the proposed model is superior to the existing regression models." @default.
- W3180171545 created "2021-07-19" @default.
- W3180171545 creator A5021052031 @default.
- W3180171545 creator A5025873597 @default.
- W3180171545 creator A5061102708 @default.
- W3180171545 creator A5082539585 @default.
- W3180171545 creator A5089345835 @default.
- W3180171545 date "2021-01-01" @default.
- W3180171545 modified "2023-10-17" @default.
- W3180171545 title "Triple-Regularized Latent Subspace Discriminative Regression for Hyperspectral Image Classification" @default.
- W3180171545 cites W1997201895 @default.
- W3180171545 cites W2004427069 @default.
- W3180171545 cites W2043080228 @default.
- W3180171545 cites W2117553576 @default.
- W3180171545 cites W2122111042 @default.
- W3180171545 cites W2134262590 @default.
- W3180171545 cites W2145962650 @default.
- W3180171545 cites W2158054868 @default.
- W3180171545 cites W2167260052 @default.
- W3180171545 cites W2167284312 @default.
- W3180171545 cites W2418115551 @default.
- W3180171545 cites W2468125297 @default.
- W3180171545 cites W2581571072 @default.
- W3180171545 cites W2603231868 @default.
- W3180171545 cites W2611632661 @default.
- W3180171545 cites W2612496192 @default.
- W3180171545 cites W2788125892 @default.
- W3180171545 cites W2791052411 @default.
- W3180171545 cites W2791459777 @default.
- W3180171545 cites W2883367876 @default.
- W3180171545 cites W2899549212 @default.
- W3180171545 cites W2900646979 @default.
- W3180171545 cites W2914145455 @default.
- W3180171545 cites W2917838509 @default.
- W3180171545 cites W2943262196 @default.
- W3180171545 cites W2946633032 @default.
- W3180171545 cites W2962853966 @default.
- W3180171545 cites W3002384566 @default.
- W3180171545 cites W3003482697 @default.
- W3180171545 cites W3008225306 @default.
- W3180171545 cites W3015746332 @default.
- W3180171545 cites W3016217983 @default.
- W3180171545 cites W3024007459 @default.
- W3180171545 cites W3042423471 @default.
- W3180171545 cites W3048029844 @default.
- W3180171545 cites W3083760513 @default.
- W3180171545 cites W3091030342 @default.
- W3180171545 cites W3101710822 @default.
- W3180171545 cites W3122581893 @default.
- W3180171545 cites W3134490757 @default.
- W3180171545 cites W4255455317 @default.
- W3180171545 cites W4292363360 @default.
- W3180171545 doi "https://doi.org/10.1109/jstars.2021.3094816" @default.
- W3180171545 hasPublicationYear "2021" @default.
- W3180171545 type Work @default.
- W3180171545 sameAs 3180171545 @default.
- W3180171545 citedByCount "1" @default.
- W3180171545 countsByYear W31801715452023 @default.
- W3180171545 crossrefType "journal-article" @default.
- W3180171545 hasAuthorship W3180171545A5021052031 @default.
- W3180171545 hasAuthorship W3180171545A5025873597 @default.
- W3180171545 hasAuthorship W3180171545A5061102708 @default.
- W3180171545 hasAuthorship W3180171545A5082539585 @default.
- W3180171545 hasAuthorship W3180171545A5089345835 @default.
- W3180171545 hasBestOaLocation W31801715451 @default.
- W3180171545 hasConcept C101738243 @default.
- W3180171545 hasConcept C104317684 @default.
- W3180171545 hasConcept C108583219 @default.
- W3180171545 hasConcept C115961682 @default.
- W3180171545 hasConcept C153180895 @default.
- W3180171545 hasConcept C154945302 @default.
- W3180171545 hasConcept C159078339 @default.
- W3180171545 hasConcept C185592680 @default.
- W3180171545 hasConcept C22019652 @default.
- W3180171545 hasConcept C32834561 @default.
- W3180171545 hasConcept C33923547 @default.
- W3180171545 hasConcept C41008148 @default.
- W3180171545 hasConcept C50644808 @default.
- W3180171545 hasConcept C55493867 @default.
- W3180171545 hasConcept C63479239 @default.
- W3180171545 hasConcept C75294576 @default.
- W3180171545 hasConcept C97931131 @default.
- W3180171545 hasConceptScore W3180171545C101738243 @default.
- W3180171545 hasConceptScore W3180171545C104317684 @default.
- W3180171545 hasConceptScore W3180171545C108583219 @default.
- W3180171545 hasConceptScore W3180171545C115961682 @default.
- W3180171545 hasConceptScore W3180171545C153180895 @default.
- W3180171545 hasConceptScore W3180171545C154945302 @default.
- W3180171545 hasConceptScore W3180171545C159078339 @default.
- W3180171545 hasConceptScore W3180171545C185592680 @default.
- W3180171545 hasConceptScore W3180171545C22019652 @default.
- W3180171545 hasConceptScore W3180171545C32834561 @default.
- W3180171545 hasConceptScore W3180171545C33923547 @default.
- W3180171545 hasConceptScore W3180171545C41008148 @default.
- W3180171545 hasConceptScore W3180171545C50644808 @default.
- W3180171545 hasConceptScore W3180171545C55493867 @default.
- W3180171545 hasConceptScore W3180171545C63479239 @default.
- W3180171545 hasConceptScore W3180171545C75294576 @default.