Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180206543> ?p ?o ?g. }
- W3180206543 endingPage "107948" @default.
- W3180206543 startingPage "107948" @default.
- W3180206543 abstract "An accurate estimation of forest aboveground biomass (AGB) is important for carbon accounting and afforestation policy making, and the aspect factors that affect forest stand growth are important to the accuracy of AGB estimation. In this study, aspect was incorporated as a variable into three machine learning algorithms (MLAs) (support vector machine (SVM), artificial neural network (ANN) and random forest (RF)), to estimate the AGB of black locust (Robinia pseudoacacia) planted forests in 96 field plots with four different aspects (sunny slope, semi-sunny slope, semi-shady slope and shady slope). The results showed that in the models incorporating aspect variables, the increase in accuracy varied from 36.72% to 41.23% for 29 validation plots based on R2. The A-RF model (RF with aspect variable), which had the highest R2 (0.8519) and lowest RMSE and rRMSE (12.552 Mg/ha and 0.175) was considered optimal for AGB estimation of black locust planted forests. The overestimation of sunny and shady slopes, and the underestimation of semi-sunny and semi-shady slopes are reduced by incorporating the aspect variable. Areas with lower AGB values mainly occur on sunny and shady slopes, and areas with higher AGB values mainly occur on semi-sunny and semi-shady slopes. Overall, our study demonstrates that the introduction of the aspect variable provided the model with a basis for the effects of different growth conditions of black locust planted forests on different aspects, which can improve the accuracy of AGB estimation." @default.
- W3180206543 created "2021-07-19" @default.
- W3180206543 creator A5038881690 @default.
- W3180206543 creator A5051483170 @default.
- W3180206543 creator A5058950871 @default.
- W3180206543 creator A5074410045 @default.
- W3180206543 creator A5081805002 @default.
- W3180206543 date "2021-10-01" @default.
- W3180206543 modified "2023-10-14" @default.
- W3180206543 title "Aboveground biomass estimation of black locust planted forests with aspect variable using machine learning regression algorithms" @default.
- W3180206543 cites W1828991496 @default.
- W3180206543 cites W1948133483 @default.
- W3180206543 cites W1970829795 @default.
- W3180206543 cites W1979144473 @default.
- W3180206543 cites W1983865151 @default.
- W3180206543 cites W2012519352 @default.
- W3180206543 cites W2018130020 @default.
- W3180206543 cites W2033275656 @default.
- W3180206543 cites W2044465660 @default.
- W3180206543 cites W2076867991 @default.
- W3180206543 cites W2077116289 @default.
- W3180206543 cites W2081719320 @default.
- W3180206543 cites W2084936455 @default.
- W3180206543 cites W2117141344 @default.
- W3180206543 cites W2133613984 @default.
- W3180206543 cites W2141545157 @default.
- W3180206543 cites W2156665896 @default.
- W3180206543 cites W2161568916 @default.
- W3180206543 cites W2163980598 @default.
- W3180206543 cites W2167083595 @default.
- W3180206543 cites W2182455218 @default.
- W3180206543 cites W2416310637 @default.
- W3180206543 cites W2417540756 @default.
- W3180206543 cites W2508131240 @default.
- W3180206543 cites W2508621980 @default.
- W3180206543 cites W2528207149 @default.
- W3180206543 cites W2533566148 @default.
- W3180206543 cites W2605106059 @default.
- W3180206543 cites W2745956617 @default.
- W3180206543 cites W2756906114 @default.
- W3180206543 cites W2765453548 @default.
- W3180206543 cites W2796569263 @default.
- W3180206543 cites W2801032191 @default.
- W3180206543 cites W2895196240 @default.
- W3180206543 cites W2903961776 @default.
- W3180206543 cites W2905659887 @default.
- W3180206543 cites W2907788294 @default.
- W3180206543 cites W2911964244 @default.
- W3180206543 cites W2928790886 @default.
- W3180206543 cites W2932477389 @default.
- W3180206543 cites W2966381923 @default.
- W3180206543 cites W2994627331 @default.
- W3180206543 cites W3005132041 @default.
- W3180206543 cites W3041066569 @default.
- W3180206543 cites W3042269172 @default.
- W3180206543 doi "https://doi.org/10.1016/j.ecolind.2021.107948" @default.
- W3180206543 hasPublicationYear "2021" @default.
- W3180206543 type Work @default.
- W3180206543 sameAs 3180206543 @default.
- W3180206543 citedByCount "13" @default.
- W3180206543 countsByYear W31802065432022 @default.
- W3180206543 countsByYear W31802065432023 @default.
- W3180206543 crossrefType "journal-article" @default.
- W3180206543 hasAuthorship W3180206543A5038881690 @default.
- W3180206543 hasAuthorship W3180206543A5051483170 @default.
- W3180206543 hasAuthorship W3180206543A5058950871 @default.
- W3180206543 hasAuthorship W3180206543A5074410045 @default.
- W3180206543 hasAuthorship W3180206543A5081805002 @default.
- W3180206543 hasBestOaLocation W31802065431 @default.
- W3180206543 hasConcept C115540264 @default.
- W3180206543 hasConcept C119857082 @default.
- W3180206543 hasConcept C134306372 @default.
- W3180206543 hasConcept C162324750 @default.
- W3180206543 hasConcept C169258074 @default.
- W3180206543 hasConcept C182365436 @default.
- W3180206543 hasConcept C187736073 @default.
- W3180206543 hasConcept C18903297 @default.
- W3180206543 hasConcept C205649164 @default.
- W3180206543 hasConcept C2776041477 @default.
- W3180206543 hasConcept C2778609550 @default.
- W3180206543 hasConcept C33923547 @default.
- W3180206543 hasConcept C39432304 @default.
- W3180206543 hasConcept C41008148 @default.
- W3180206543 hasConcept C54286561 @default.
- W3180206543 hasConcept C56095865 @default.
- W3180206543 hasConcept C86803240 @default.
- W3180206543 hasConcept C96250715 @default.
- W3180206543 hasConcept C97137747 @default.
- W3180206543 hasConceptScore W3180206543C115540264 @default.
- W3180206543 hasConceptScore W3180206543C119857082 @default.
- W3180206543 hasConceptScore W3180206543C134306372 @default.
- W3180206543 hasConceptScore W3180206543C162324750 @default.
- W3180206543 hasConceptScore W3180206543C169258074 @default.
- W3180206543 hasConceptScore W3180206543C182365436 @default.
- W3180206543 hasConceptScore W3180206543C187736073 @default.
- W3180206543 hasConceptScore W3180206543C18903297 @default.
- W3180206543 hasConceptScore W3180206543C205649164 @default.
- W3180206543 hasConceptScore W3180206543C2776041477 @default.