Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180289605> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W3180289605 abstract "Deep Learning methods are among the state-of-art of several computer vision tasks, intelligent control systems, fast and reliable signal processing and inference in big data regimes. It is also a promising tool for scientific analysis, such as gamma/hadron discrimination. We present an approach based on Deep Learning for the regression of shower parameters, namely the its core position and ground energy, using water Cherenkov detectors. We design our method using simulations. We evaluate the limits of such estimation near the borders of the arrays, including when the center is outside the detector’s range. We used Bayesian Neural Networks and derived and quantified systematic errors arising from Deep Learning models and in an EfficientNet model design. The method could be easily adapted to estimate other parameters." @default.
- W3180289605 created "2021-07-19" @default.
- W3180289605 creator A5014187677 @default.
- W3180289605 creator A5022686161 @default.
- W3180289605 creator A5048986085 @default.
- W3180289605 creator A5058477825 @default.
- W3180289605 creator A5064063370 @default.
- W3180289605 creator A5067935441 @default.
- W3180289605 creator A5083047383 @default.
- W3180289605 creator A5084060519 @default.
- W3180289605 creator A5085078030 @default.
- W3180289605 date "2021-07-05" @default.
- W3180289605 modified "2023-10-16" @default.
- W3180289605 title "Bayesian Deep Learning for Shower Parameter Reconstruction in Water Cherenkov Detectors" @default.
- W3180289605 doi "https://doi.org/10.22323/1.395.0739" @default.
- W3180289605 hasPublicationYear "2021" @default.
- W3180289605 type Work @default.
- W3180289605 sameAs 3180289605 @default.
- W3180289605 citedByCount "0" @default.
- W3180289605 crossrefType "proceedings-article" @default.
- W3180289605 hasAuthorship W3180289605A5014187677 @default.
- W3180289605 hasAuthorship W3180289605A5022686161 @default.
- W3180289605 hasAuthorship W3180289605A5048986085 @default.
- W3180289605 hasAuthorship W3180289605A5058477825 @default.
- W3180289605 hasAuthorship W3180289605A5064063370 @default.
- W3180289605 hasAuthorship W3180289605A5067935441 @default.
- W3180289605 hasAuthorship W3180289605A5083047383 @default.
- W3180289605 hasAuthorship W3180289605A5084060519 @default.
- W3180289605 hasAuthorship W3180289605A5085078030 @default.
- W3180289605 hasBestOaLocation W31802896051 @default.
- W3180289605 hasConcept C105795698 @default.
- W3180289605 hasConcept C107673813 @default.
- W3180289605 hasConcept C108583219 @default.
- W3180289605 hasConcept C119857082 @default.
- W3180289605 hasConcept C127413603 @default.
- W3180289605 hasConcept C146978453 @default.
- W3180289605 hasConcept C154945302 @default.
- W3180289605 hasConcept C160234255 @default.
- W3180289605 hasConcept C186370098 @default.
- W3180289605 hasConcept C204323151 @default.
- W3180289605 hasConcept C2776214188 @default.
- W3180289605 hasConcept C33923547 @default.
- W3180289605 hasConcept C41008148 @default.
- W3180289605 hasConcept C50644808 @default.
- W3180289605 hasConcept C72591435 @default.
- W3180289605 hasConcept C76155785 @default.
- W3180289605 hasConcept C94915269 @default.
- W3180289605 hasConceptScore W3180289605C105795698 @default.
- W3180289605 hasConceptScore W3180289605C107673813 @default.
- W3180289605 hasConceptScore W3180289605C108583219 @default.
- W3180289605 hasConceptScore W3180289605C119857082 @default.
- W3180289605 hasConceptScore W3180289605C127413603 @default.
- W3180289605 hasConceptScore W3180289605C146978453 @default.
- W3180289605 hasConceptScore W3180289605C154945302 @default.
- W3180289605 hasConceptScore W3180289605C160234255 @default.
- W3180289605 hasConceptScore W3180289605C186370098 @default.
- W3180289605 hasConceptScore W3180289605C204323151 @default.
- W3180289605 hasConceptScore W3180289605C2776214188 @default.
- W3180289605 hasConceptScore W3180289605C33923547 @default.
- W3180289605 hasConceptScore W3180289605C41008148 @default.
- W3180289605 hasConceptScore W3180289605C50644808 @default.
- W3180289605 hasConceptScore W3180289605C72591435 @default.
- W3180289605 hasConceptScore W3180289605C76155785 @default.
- W3180289605 hasConceptScore W3180289605C94915269 @default.
- W3180289605 hasLocation W31802896051 @default.
- W3180289605 hasOpenAccess W3180289605 @default.
- W3180289605 hasPrimaryLocation W31802896051 @default.
- W3180289605 hasRelatedWork W2338752163 @default.
- W3180289605 hasRelatedWork W2511279186 @default.
- W3180289605 hasRelatedWork W2963058055 @default.
- W3180289605 hasRelatedWork W3004547119 @default.
- W3180289605 hasRelatedWork W3029748970 @default.
- W3180289605 hasRelatedWork W3122400532 @default.
- W3180289605 hasRelatedWork W4223943233 @default.
- W3180289605 hasRelatedWork W4287726214 @default.
- W3180289605 hasRelatedWork W4312200629 @default.
- W3180289605 hasRelatedWork W4360585206 @default.
- W3180289605 isParatext "false" @default.
- W3180289605 isRetracted "false" @default.
- W3180289605 magId "3180289605" @default.
- W3180289605 workType "article" @default.