Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180306598> ?p ?o ?g. }
- W3180306598 endingPage "929" @default.
- W3180306598 startingPage "916" @default.
- W3180306598 abstract "To reduce carbon emissions, using more solar energy is a feasible solution. Many meteorological-based models can estimate global downward solar radiation (DSR), but they are with limited applications due to the point-based estimation and low temporal resolution. Satellite remote sensing-based models can estimate DSR with better spatial coverage. However, most previous models are restricted to estimate clear-sky or monthly scale DSR at several sites, limiting the solar energy monitoring of nationwide scale. In this study, using high spatiotemporal resolution Geostationary Operational Environmental Satellites (GOES)-16 satellite data, an iterative random forest (RF) model was developed to estimate and map half-hourly DSR at 1-km spatial resolution over the Continental United States (CONUS). The results show that the iterative RF model performed better than multiple linear regression (MLR) and traditional RF models. The accuracy of estimating half-hourly DSR is that R2 = 0.95, root-mean-square-error (RMSE) = 66.92 W/m2, and mean-bias-error (MBE) = 0.06 W/m2. Half-hourly and daily DSR with spatial resolution 1-km over the CONUS were mapped. The GOES-16 estimated DSR showed the similar spatial patterns with the results from the Clouds and the Earth's Radiant Energy System (CERES) DSR product. This study demonstrated the potential of GOES-16 data for mapping DSR over the CONUS, and hence can be further used in solar energy related applications." @default.
- W3180306598 created "2021-07-19" @default.
- W3180306598 creator A5010184846 @default.
- W3180306598 creator A5045694659 @default.
- W3180306598 creator A5056492528 @default.
- W3180306598 date "2021-11-01" @default.
- W3180306598 modified "2023-10-16" @default.
- W3180306598 title "Estimating half-hourly solar radiation over the Continental United States using GOES-16 data with iterative random forest" @default.
- W3180306598 cites W1968988934 @default.
- W3180306598 cites W1970122714 @default.
- W3180306598 cites W1986382767 @default.
- W3180306598 cites W2008697060 @default.
- W3180306598 cites W2025003514 @default.
- W3180306598 cites W2025745000 @default.
- W3180306598 cites W2027756597 @default.
- W3180306598 cites W2098631345 @default.
- W3180306598 cites W2151249467 @default.
- W3180306598 cites W2151838543 @default.
- W3180306598 cites W2176500283 @default.
- W3180306598 cites W2288990053 @default.
- W3180306598 cites W2292155819 @default.
- W3180306598 cites W2296185332 @default.
- W3180306598 cites W2318515285 @default.
- W3180306598 cites W2494302106 @default.
- W3180306598 cites W2497200023 @default.
- W3180306598 cites W2524646887 @default.
- W3180306598 cites W2567628229 @default.
- W3180306598 cites W2570837382 @default.
- W3180306598 cites W2591703502 @default.
- W3180306598 cites W2729015950 @default.
- W3180306598 cites W2744517940 @default.
- W3180306598 cites W2755677941 @default.
- W3180306598 cites W2758156207 @default.
- W3180306598 cites W2790306948 @default.
- W3180306598 cites W2792092426 @default.
- W3180306598 cites W2793332967 @default.
- W3180306598 cites W2799695133 @default.
- W3180306598 cites W2800133189 @default.
- W3180306598 cites W2804796950 @default.
- W3180306598 cites W2889038356 @default.
- W3180306598 cites W2899689882 @default.
- W3180306598 cites W2911964244 @default.
- W3180306598 cites W2912697538 @default.
- W3180306598 cites W2941821464 @default.
- W3180306598 cites W2951458873 @default.
- W3180306598 cites W2965206442 @default.
- W3180306598 cites W2968209379 @default.
- W3180306598 cites W2968885972 @default.
- W3180306598 cites W2977229943 @default.
- W3180306598 cites W2979720229 @default.
- W3180306598 cites W2982431739 @default.
- W3180306598 cites W2983566047 @default.
- W3180306598 cites W2995190772 @default.
- W3180306598 cites W2997481471 @default.
- W3180306598 cites W2998121241 @default.
- W3180306598 cites W2998197160 @default.
- W3180306598 cites W3000855853 @default.
- W3180306598 cites W3002090371 @default.
- W3180306598 cites W3013449388 @default.
- W3180306598 cites W3017037572 @default.
- W3180306598 cites W3027446892 @default.
- W3180306598 cites W3029532940 @default.
- W3180306598 cites W3038860888 @default.
- W3180306598 cites W3049401419 @default.
- W3180306598 cites W3083536041 @default.
- W3180306598 cites W3094518133 @default.
- W3180306598 cites W3096822900 @default.
- W3180306598 cites W3130220533 @default.
- W3180306598 doi "https://doi.org/10.1016/j.renene.2021.06.129" @default.
- W3180306598 hasPublicationYear "2021" @default.
- W3180306598 type Work @default.
- W3180306598 sameAs 3180306598 @default.
- W3180306598 citedByCount "13" @default.
- W3180306598 countsByYear W31803065982021 @default.
- W3180306598 countsByYear W31803065982022 @default.
- W3180306598 countsByYear W31803065982023 @default.
- W3180306598 crossrefType "journal-article" @default.
- W3180306598 hasAuthorship W3180306598A5010184846 @default.
- W3180306598 hasAuthorship W3180306598A5045694659 @default.
- W3180306598 hasAuthorship W3180306598A5056492528 @default.
- W3180306598 hasConcept C105795698 @default.
- W3180306598 hasConcept C119599485 @default.
- W3180306598 hasConcept C127413603 @default.
- W3180306598 hasConcept C139945424 @default.
- W3180306598 hasConcept C146978453 @default.
- W3180306598 hasConcept C153294291 @default.
- W3180306598 hasConcept C154945302 @default.
- W3180306598 hasConcept C16405173 @default.
- W3180306598 hasConcept C19269812 @default.
- W3180306598 hasConcept C205372480 @default.
- W3180306598 hasConcept C205649164 @default.
- W3180306598 hasConcept C2778755073 @default.
- W3180306598 hasConcept C33923547 @default.
- W3180306598 hasConcept C39432304 @default.
- W3180306598 hasConcept C41008148 @default.
- W3180306598 hasConcept C541104983 @default.
- W3180306598 hasConcept C58640448 @default.
- W3180306598 hasConcept C62649853 @default.