Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180333897> ?p ?o ?g. }
- W3180333897 endingPage "105841" @default.
- W3180333897 startingPage "105841" @default.
- W3180333897 abstract "The measurement of airborne particles with sizes below 3 nm is critical, as it helps the understanding of atmospheric nucleation and elucidates important particle synthesis mechanisms in the gas phase. Condensation particle counters (CPCs) have been widely used to measure the concentration of aerosols. However, it is challenging for the CPCs to measure particles below 3 nm due to the insufficient activation of these particles via vapor condensation. Methods have been proposed to increase the saturation ratio of the condensing vapor to promote the detection efficiency of sub-3 nm particles in the CPCs. Different working fluids also make a considerable impact on particle detection. Given the various types of parameters and the wide range of values these parameters can take, modeling studies are needed in searching for the optimal operating conditions of a CPC. In this work, we simulated the sub-3 nm particle activation and growth in a laminar flow CPC using COMSOL Multiphysics®, which has the advantages of simulating complex flow conditions and interfacing with post-processing software such as MATLAB. Our simulation incorporates the influence of temperature-dependent air and working fluid properties on particle activation and the impact of latent heat and non-continuum effects on droplet growth. Following the method introduced by Iida, Stolzenburg and McMurry (2009), particle activation is optimized for a given working fluid and condenser temperature by adjusting the saturator temperature to achieve a homogeneous nucleation rate of 1 s−1. The results, characterized by Dkel,0 (largest particle size that cannot be activated) and Dkel,50 (particle size activated with 50% efficiency), were compared against the analytical Graetz model used in Stolzenburg (1988). Our COMSOL simulations show that glycerine, diethylene glycol, ethylene glycol, 2-aminoethanol, and dimethyl phthalate are the best five working fluids achieving the smallest Dkel,50 among 45 commonly used solvents. The Dkel,50 values simulated by COMSOL under a condenser temperature of 10 °C for the five working fluids are 1.56, 1.88, 1.92, 1.98, and 2.10 nm, respectively, while the values simulated by the analytical Graetz solution differ slightly from 0.4% to 0.7%. The results demonstrate excellent agreement between these two simulation methods. For the five best working fluids activating the same 2.1 nm particles, the droplets can grow to sizes detectable by a second-stage CPC. The sensitivity of the COMSOL solution to the inlet condition and the form of convective diffusion equations is investigated. We also discussed the effect of CPC operating conditions, such as the condenser geometry and flow conditions, on particle activation for optimizing the performance of the CPC in detecting sub-3 nm particles." @default.
- W3180333897 created "2021-07-19" @default.
- W3180333897 creator A5010476360 @default.
- W3180333897 creator A5011673820 @default.
- W3180333897 creator A5029040392 @default.
- W3180333897 creator A5075827201 @default.
- W3180333897 creator A5078901555 @default.
- W3180333897 date "2021-11-01" @default.
- W3180333897 modified "2023-10-12" @default.
- W3180333897 title "Optimizing the activation efficiency of sub-3 nm particles in a laminar flow condensation particle counter: Model simulation" @default.
- W3180333897 cites W1972271699 @default.
- W3180333897 cites W1972480458 @default.
- W3180333897 cites W1979118181 @default.
- W3180333897 cites W1983492704 @default.
- W3180333897 cites W1991573744 @default.
- W3180333897 cites W1993013109 @default.
- W3180333897 cites W2023234953 @default.
- W3180333897 cites W2027787449 @default.
- W3180333897 cites W2040254941 @default.
- W3180333897 cites W2044969083 @default.
- W3180333897 cites W2047264114 @default.
- W3180333897 cites W2071531062 @default.
- W3180333897 cites W2077355739 @default.
- W3180333897 cites W2091597541 @default.
- W3180333897 cites W2096645515 @default.
- W3180333897 cites W2113882388 @default.
- W3180333897 cites W2121197608 @default.
- W3180333897 cites W2146870897 @default.
- W3180333897 cites W2252017686 @default.
- W3180333897 cites W2332002377 @default.
- W3180333897 cites W2395517506 @default.
- W3180333897 cites W2553683356 @default.
- W3180333897 cites W2776868581 @default.
- W3180333897 cites W2790738606 @default.
- W3180333897 cites W2883461944 @default.
- W3180333897 cites W2884595465 @default.
- W3180333897 cites W2967426872 @default.
- W3180333897 cites W2982579524 @default.
- W3180333897 doi "https://doi.org/10.1016/j.jaerosci.2021.105841" @default.
- W3180333897 hasPublicationYear "2021" @default.
- W3180333897 type Work @default.
- W3180333897 sameAs 3180333897 @default.
- W3180333897 citedByCount "3" @default.
- W3180333897 countsByYear W31803338972023 @default.
- W3180333897 crossrefType "journal-article" @default.
- W3180333897 hasAuthorship W3180333897A5010476360 @default.
- W3180333897 hasAuthorship W3180333897A5011673820 @default.
- W3180333897 hasAuthorship W3180333897A5029040392 @default.
- W3180333897 hasAuthorship W3180333897A5075827201 @default.
- W3180333897 hasAuthorship W3180333897A5078901555 @default.
- W3180333897 hasBestOaLocation W31803338971 @default.
- W3180333897 hasConcept C111368507 @default.
- W3180333897 hasConcept C120665830 @default.
- W3180333897 hasConcept C121332964 @default.
- W3180333897 hasConcept C127313418 @default.
- W3180333897 hasConcept C135628077 @default.
- W3180333897 hasConcept C144352136 @default.
- W3180333897 hasConcept C147789679 @default.
- W3180333897 hasConcept C178790620 @default.
- W3180333897 hasConcept C185592680 @default.
- W3180333897 hasConcept C187530423 @default.
- W3180333897 hasConcept C192562407 @default.
- W3180333897 hasConcept C200093464 @default.
- W3180333897 hasConcept C20556612 @default.
- W3180333897 hasConcept C2778517922 @default.
- W3180333897 hasConcept C2779345167 @default.
- W3180333897 hasConcept C2780934509 @default.
- W3180333897 hasConcept C2982854487 @default.
- W3180333897 hasConcept C46435376 @default.
- W3180333897 hasConcept C57879066 @default.
- W3180333897 hasConcept C61048295 @default.
- W3180333897 hasConcept C74412414 @default.
- W3180333897 hasConcept C76563973 @default.
- W3180333897 hasConcept C97355855 @default.
- W3180333897 hasConceptScore W3180333897C111368507 @default.
- W3180333897 hasConceptScore W3180333897C120665830 @default.
- W3180333897 hasConceptScore W3180333897C121332964 @default.
- W3180333897 hasConceptScore W3180333897C127313418 @default.
- W3180333897 hasConceptScore W3180333897C135628077 @default.
- W3180333897 hasConceptScore W3180333897C144352136 @default.
- W3180333897 hasConceptScore W3180333897C147789679 @default.
- W3180333897 hasConceptScore W3180333897C178790620 @default.
- W3180333897 hasConceptScore W3180333897C185592680 @default.
- W3180333897 hasConceptScore W3180333897C187530423 @default.
- W3180333897 hasConceptScore W3180333897C192562407 @default.
- W3180333897 hasConceptScore W3180333897C200093464 @default.
- W3180333897 hasConceptScore W3180333897C20556612 @default.
- W3180333897 hasConceptScore W3180333897C2778517922 @default.
- W3180333897 hasConceptScore W3180333897C2779345167 @default.
- W3180333897 hasConceptScore W3180333897C2780934509 @default.
- W3180333897 hasConceptScore W3180333897C2982854487 @default.
- W3180333897 hasConceptScore W3180333897C46435376 @default.
- W3180333897 hasConceptScore W3180333897C57879066 @default.
- W3180333897 hasConceptScore W3180333897C61048295 @default.
- W3180333897 hasConceptScore W3180333897C74412414 @default.
- W3180333897 hasConceptScore W3180333897C76563973 @default.
- W3180333897 hasConceptScore W3180333897C97355855 @default.
- W3180333897 hasFunder F4320306076 @default.