Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180378944> ?p ?o ?g. }
- W3180378944 endingPage "102178" @default.
- W3180378944 startingPage "102178" @default.
- W3180378944 abstract "Infrared spectroscopy (IRS) is a method used to identify minerals based on their spectral response to infrared light. Spot-based IRS (also known as ‘reflectance spectroscopy’) has frequently been used as an analytical method by the geothermal industry, while infrared imaging spectroscopy (IRIS) has only recently been introduced. Research applying IRIS to the geothermal industry is still limited to academic trials, but sufficient progress has been made in algorithm development and application cases to make this technology ready for uptake by the geothermal industry. In contrast, the mineral exploration industry has embraced IRIS for a number of years and is driving its development forward. In this paper, we review the work that has been done in the geothermal industry with spot-based and imaging IRS, as well as review relevant examples from the mineral exploration realm to look for pathfinders for future uses of the method within the geothermal industry. The review focuses on the application of visible to near infrared (VNIR) and short-wave infrared (SWIR) spectroscopy, as the application of long-wave infrared (LWIR) spectroscopy in the geothermal industry is still very limited. To cater for a wide range of audiences, we will explain the background of infrared spectroscopy as well as the commonly used geothermal index minerals and analytical techniques typically employed by the geothermal industry. Our review shows that IRS has a higher sensitivity in identifying kaolinite (along with its degree of crystallinity), ammonium-bearing minerals, and chemical variations of (spectrally-active) minerals compared to other methods. The ability of IRIS to obtain spectra with high spatial resolution enables the method to identify: (1) less common minerals, and (2) the potential to distinguish smectite and illite formed as interlayered minerals from those formed as two different grains. The latter identification typically cannot be done using spot-based IRS. Other parameters that can only be seen in IRIS include spatial relationships amongst minerals and more robust mineral abundance estimates. The mineral exploration industry has demonstrated that applying IRIS can go beyond just identifying minerals. It can also successfully identify host lithologies on intensely altered rocks, as well as identify and extract the position of veins and veinlets. The latter information is important for geothermal exploration, particularly to indicate permeability and cross-cutting relationships amongst alteration minerals. The IRIS applications that have been demonstrated by the mineral exploration community potentially represent the future trend in the geothermal industry. Spot-based IRS has already proven its added value in assisting geothermal exploration and exploitation. With the latest instruments and algorithm developments in place, imaging IRS is now on the brink of demonstrating its value to the geothermal industry." @default.
- W3180378944 created "2021-07-19" @default.
- W3180378944 creator A5030743731 @default.
- W3180378944 creator A5036964385 @default.
- W3180378944 creator A5057791751 @default.
- W3180378944 creator A5083014910 @default.
- W3180378944 date "2021-11-01" @default.
- W3180378944 modified "2023-10-16" @default.
- W3180378944 title "VNIR-SWIR infrared (imaging) spectroscopy for geothermal exploration: Current status and future directions" @default.
- W3180378944 cites W1545538788 @default.
- W3180378944 cites W1648288504 @default.
- W3180378944 cites W1963972474 @default.
- W3180378944 cites W1976037363 @default.
- W3180378944 cites W1986530877 @default.
- W3180378944 cites W1989973478 @default.
- W3180378944 cites W1994404910 @default.
- W3180378944 cites W1998818470 @default.
- W3180378944 cites W1999943717 @default.
- W3180378944 cites W2009584263 @default.
- W3180378944 cites W2010797000 @default.
- W3180378944 cites W2012997301 @default.
- W3180378944 cites W2016268312 @default.
- W3180378944 cites W2017154332 @default.
- W3180378944 cites W2018194343 @default.
- W3180378944 cites W2018698053 @default.
- W3180378944 cites W2020201494 @default.
- W3180378944 cites W2039324550 @default.
- W3180378944 cites W2043549344 @default.
- W3180378944 cites W2045099465 @default.
- W3180378944 cites W2048331070 @default.
- W3180378944 cites W2051360535 @default.
- W3180378944 cites W2051757039 @default.
- W3180378944 cites W2058173185 @default.
- W3180378944 cites W2059414186 @default.
- W3180378944 cites W2060353184 @default.
- W3180378944 cites W2065186430 @default.
- W3180378944 cites W2065880203 @default.
- W3180378944 cites W2074139688 @default.
- W3180378944 cites W2082041601 @default.
- W3180378944 cites W2082234932 @default.
- W3180378944 cites W2083307257 @default.
- W3180378944 cites W2087407047 @default.
- W3180378944 cites W2088513472 @default.
- W3180378944 cites W2090861781 @default.
- W3180378944 cites W2103648693 @default.
- W3180378944 cites W2115082809 @default.
- W3180378944 cites W2119242601 @default.
- W3180378944 cites W2122452972 @default.
- W3180378944 cites W2126318314 @default.
- W3180378944 cites W2139454988 @default.
- W3180378944 cites W2142644533 @default.
- W3180378944 cites W2146928847 @default.
- W3180378944 cites W2164574438 @default.
- W3180378944 cites W2170363325 @default.
- W3180378944 cites W2284154698 @default.
- W3180378944 cites W2323160308 @default.
- W3180378944 cites W2325948779 @default.
- W3180378944 cites W2407590321 @default.
- W3180378944 cites W2527344479 @default.
- W3180378944 cites W2528685991 @default.
- W3180378944 cites W2544798769 @default.
- W3180378944 cites W2558312404 @default.
- W3180378944 cites W2589105574 @default.
- W3180378944 cites W2602899523 @default.
- W3180378944 cites W2606412288 @default.
- W3180378944 cites W2606609170 @default.
- W3180378944 cites W2791366451 @default.
- W3180378944 cites W2792216949 @default.
- W3180378944 cites W2899506481 @default.
- W3180378944 cites W2902595180 @default.
- W3180378944 cites W2916521421 @default.
- W3180378944 cites W2916564579 @default.
- W3180378944 cites W2920404961 @default.
- W3180378944 cites W2920738159 @default.
- W3180378944 cites W2945071234 @default.
- W3180378944 cites W2946805800 @default.
- W3180378944 cites W2972939024 @default.
- W3180378944 cites W2994988324 @default.
- W3180378944 cites W3087243337 @default.
- W3180378944 doi "https://doi.org/10.1016/j.geothermics.2021.102178" @default.
- W3180378944 hasPublicationYear "2021" @default.
- W3180378944 type Work @default.
- W3180378944 sameAs 3180378944 @default.
- W3180378944 citedByCount "3" @default.
- W3180378944 countsByYear W31803789442021 @default.
- W3180378944 countsByYear W31803789442022 @default.
- W3180378944 countsByYear W31803789442023 @default.
- W3180378944 crossrefType "journal-article" @default.
- W3180378944 hasAuthorship W3180378944A5030743731 @default.
- W3180378944 hasAuthorship W3180378944A5036964385 @default.
- W3180378944 hasAuthorship W3180378944A5057791751 @default.
- W3180378944 hasAuthorship W3180378944A5083014910 @default.
- W3180378944 hasBestOaLocation W31803789441 @default.
- W3180378944 hasConcept C111766609 @default.
- W3180378944 hasConcept C121332964 @default.
- W3180378944 hasConcept C127313418 @default.
- W3180378944 hasConcept C153642686 @default.
- W3180378944 hasConcept C159078339 @default.