Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180408064> ?p ?o ?g. }
- W3180408064 endingPage "e28776" @default.
- W3180408064 startingPage "e28776" @default.
- W3180408064 abstract "The use of machine learning to develop intelligent software tools for the interpretation of radiology images has gained widespread attention in recent years. The development, deployment, and eventual adoption of these models in clinical practice, however, remains fraught with challenges. In this paper, we propose a list of key considerations that machine learning researchers must recognize and address to make their models accurate, robust, and usable in practice. We discuss insufficient training data, decentralized data sets, high cost of annotations, ambiguous ground truth, imbalance in class representation, asymmetric misclassification costs, relevant performance metrics, generalization of models to unseen data sets, model decay, adversarial attacks, explainability, fairness and bias, and clinical validation. We describe each consideration and identify the techniques used to address it. Although these techniques have been discussed in prior research, by freshly examining them in the context of medical imaging and compiling them in the form of a laundry list, we hope to make them more accessible to researchers, software developers, radiologists, and other stakeholders." @default.
- W3180408064 created "2021-07-19" @default.
- W3180408064 creator A5016796365 @default.
- W3180408064 creator A5040554782 @default.
- W3180408064 creator A5089694760 @default.
- W3180408064 date "2021-09-09" @default.
- W3180408064 modified "2023-09-25" @default.
- W3180408064 title "Key Technology Considerations in Developing and Deploying Machine Learning Models in Clinical Radiology Practice" @default.
- W3180408064 cites W1966716734 @default.
- W3180408064 cites W1976526581 @default.
- W3180408064 cites W1986649315 @default.
- W3180408064 cites W1992579055 @default.
- W3180408064 cites W1993220166 @default.
- W3180408064 cites W2000051383 @default.
- W3180408064 cites W2006020859 @default.
- W3180408064 cites W2010135967 @default.
- W3180408064 cites W2023639956 @default.
- W3180408064 cites W2041069220 @default.
- W3180408064 cites W2042804521 @default.
- W3180408064 cites W2099419573 @default.
- W3180408064 cites W2103614420 @default.
- W3180408064 cites W2104094955 @default.
- W3180408064 cites W2107595635 @default.
- W3180408064 cites W2115650093 @default.
- W3180408064 cites W2118978333 @default.
- W3180408064 cites W2119157339 @default.
- W3180408064 cites W2120513799 @default.
- W3180408064 cites W2123737882 @default.
- W3180408064 cites W2126804515 @default.
- W3180408064 cites W2132264805 @default.
- W3180408064 cites W2135900825 @default.
- W3180408064 cites W2148143831 @default.
- W3180408064 cites W2165340096 @default.
- W3180408064 cites W2170505850 @default.
- W3180408064 cites W2243397390 @default.
- W3180408064 cites W2282821441 @default.
- W3180408064 cites W2338526423 @default.
- W3180408064 cites W2533800772 @default.
- W3180408064 cites W2593768305 @default.
- W3180408064 cites W2604756720 @default.
- W3180408064 cites W2607219512 @default.
- W3180408064 cites W2611576673 @default.
- W3180408064 cites W2744999500 @default.
- W3180408064 cites W2761100306 @default.
- W3180408064 cites W2772455222 @default.
- W3180408064 cites W2778854158 @default.
- W3180408064 cites W2783687327 @default.
- W3180408064 cites W2785863263 @default.
- W3180408064 cites W2786808285 @default.
- W3180408064 cites W2791103947 @default.
- W3180408064 cites W2792974269 @default.
- W3180408064 cites W2793406320 @default.
- W3180408064 cites W2798658180 @default.
- W3180408064 cites W2803760365 @default.
- W3180408064 cites W2809878087 @default.
- W3180408064 cites W2811374795 @default.
- W3180408064 cites W2883357302 @default.
- W3180408064 cites W2883611268 @default.
- W3180408064 cites W2890139949 @default.
- W3180408064 cites W2912664121 @default.
- W3180408064 cites W2913223168 @default.
- W3180408064 cites W2915829734 @default.
- W3180408064 cites W2918408501 @default.
- W3180408064 cites W2924551358 @default.
- W3180408064 cites W2936503027 @default.
- W3180408064 cites W2954996726 @default.
- W3180408064 cites W2962700793 @default.
- W3180408064 cites W2962838801 @default.
- W3180408064 cites W2962858109 @default.
- W3180408064 cites W2963466845 @default.
- W3180408064 cites W2963560987 @default.
- W3180408064 cites W2964082701 @default.
- W3180408064 cites W2964317695 @default.
- W3180408064 cites W2981451251 @default.
- W3180408064 cites W2981869278 @default.
- W3180408064 cites W2991676991 @default.
- W3180408064 cites W2993252589 @default.
- W3180408064 cites W3030030520 @default.
- W3180408064 cites W3036552116 @default.
- W3180408064 cites W3046918297 @default.
- W3180408064 cites W3089578458 @default.
- W3180408064 cites W3101156210 @default.
- W3180408064 cites W3103694015 @default.
- W3180408064 cites W3134978274 @default.
- W3180408064 cites W3177931007 @default.
- W3180408064 cites W4230683138 @default.
- W3180408064 cites W4233026002 @default.
- W3180408064 cites W4255466416 @default.
- W3180408064 doi "https://doi.org/10.2196/28776" @default.
- W3180408064 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8461525" @default.
- W3180408064 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34499049" @default.
- W3180408064 hasPublicationYear "2021" @default.
- W3180408064 type Work @default.
- W3180408064 sameAs 3180408064 @default.
- W3180408064 citedByCount "7" @default.
- W3180408064 countsByYear W31804080642021 @default.
- W3180408064 countsByYear W31804080642022 @default.
- W3180408064 countsByYear W31804080642023 @default.