Matches in SemOpenAlex for { <https://semopenalex.org/work/W3180593546> ?p ?o ?g. }
- W3180593546 endingPage "101185" @default.
- W3180593546 startingPage "101172" @default.
- W3180593546 abstract "This paper presents two novel facial expression recognition techniques: the real-time ensemble for facial expression recognition (REFER) and the facial expression recognition network (FERNet). Both approaches can detect facial expressions from various poses, distances, angles, and resolutions, and both techniques exhibit high computational efficiency and portability. REFER outperforms the existing approaches in terms of cross-dataset accuracy, making it an ideal network to use on fresh data. FERNet is a compact convolutional neural network that uses both geometric and texture features to achieve up to 98% accuracy on the MUG dataset. Both approaches can process 14 frames per second (FPS) from a live video capture on a battery-powered Raspberry Pi 4." @default.
- W3180593546 created "2021-07-19" @default.
- W3180593546 creator A5038571252 @default.
- W3180593546 creator A5070308785 @default.
- W3180593546 creator A5082509767 @default.
- W3180593546 creator A5087037678 @default.
- W3180593546 date "2021-01-01" @default.
- W3180593546 modified "2023-09-23" @default.
- W3180593546 title "Mobile-Optimized Facial Expression Recognition Techniques" @default.
- W3180593546 cites W1655469623 @default.
- W3180593546 cites W2014185685 @default.
- W3180593546 cites W2024605627 @default.
- W3180593546 cites W2031540617 @default.
- W3180593546 cites W2042333532 @default.
- W3180593546 cites W2079944188 @default.
- W3180593546 cites W2091126093 @default.
- W3180593546 cites W2103943262 @default.
- W3180593546 cites W2124633402 @default.
- W3180593546 cites W2138206939 @default.
- W3180593546 cites W2138584058 @default.
- W3180593546 cites W2139916508 @default.
- W3180593546 cites W2146994234 @default.
- W3180593546 cites W2152826865 @default.
- W3180593546 cites W2153635508 @default.
- W3180593546 cites W2163352848 @default.
- W3180593546 cites W2194775991 @default.
- W3180593546 cites W2244142460 @default.
- W3180593546 cites W2246249023 @default.
- W3180593546 cites W2284800790 @default.
- W3180593546 cites W2326887180 @default.
- W3180593546 cites W2345305417 @default.
- W3180593546 cites W2487852963 @default.
- W3180593546 cites W2516696859 @default.
- W3180593546 cites W2517304597 @default.
- W3180593546 cites W2527894365 @default.
- W3180593546 cites W2551403050 @default.
- W3180593546 cites W2588367409 @default.
- W3180593546 cites W2600389231 @default.
- W3180593546 cites W2606933083 @default.
- W3180593546 cites W2737898408 @default.
- W3180593546 cites W2743439846 @default.
- W3180593546 cites W2762582125 @default.
- W3180593546 cites W2767405849 @default.
- W3180593546 cites W2774147932 @default.
- W3180593546 cites W2799041689 @default.
- W3180593546 cites W2887990646 @default.
- W3180593546 cites W2898908175 @default.
- W3180593546 cites W2946869992 @default.
- W3180593546 cites W2963092169 @default.
- W3180593546 cites W2963623198 @default.
- W3180593546 cites W2964139520 @default.
- W3180593546 cites W2964347177 @default.
- W3180593546 cites W2971794874 @default.
- W3180593546 cites W3003720578 @default.
- W3180593546 cites W3005529595 @default.
- W3180593546 cites W3006012949 @default.
- W3180593546 cites W3036374935 @default.
- W3180593546 cites W3089644214 @default.
- W3180593546 cites W3097096317 @default.
- W3180593546 cites W4211153864 @default.
- W3180593546 doi "https://doi.org/10.1109/access.2021.3095844" @default.
- W3180593546 hasPublicationYear "2021" @default.
- W3180593546 type Work @default.
- W3180593546 sameAs 3180593546 @default.
- W3180593546 citedByCount "2" @default.
- W3180593546 countsByYear W31805935462023 @default.
- W3180593546 crossrefType "journal-article" @default.
- W3180593546 hasAuthorship W3180593546A5038571252 @default.
- W3180593546 hasAuthorship W3180593546A5070308785 @default.
- W3180593546 hasAuthorship W3180593546A5082509767 @default.
- W3180593546 hasAuthorship W3180593546A5087037678 @default.
- W3180593546 hasBestOaLocation W31805935461 @default.
- W3180593546 hasConcept C111919701 @default.
- W3180593546 hasConcept C153180895 @default.
- W3180593546 hasConcept C154945302 @default.
- W3180593546 hasConcept C195704467 @default.
- W3180593546 hasConcept C199360897 @default.
- W3180593546 hasConcept C2987714656 @default.
- W3180593546 hasConcept C31510193 @default.
- W3180593546 hasConcept C31972630 @default.
- W3180593546 hasConcept C41008148 @default.
- W3180593546 hasConcept C4641261 @default.
- W3180593546 hasConcept C63000827 @default.
- W3180593546 hasConcept C81363708 @default.
- W3180593546 hasConcept C88799230 @default.
- W3180593546 hasConcept C90559484 @default.
- W3180593546 hasConcept C98045186 @default.
- W3180593546 hasConceptScore W3180593546C111919701 @default.
- W3180593546 hasConceptScore W3180593546C153180895 @default.
- W3180593546 hasConceptScore W3180593546C154945302 @default.
- W3180593546 hasConceptScore W3180593546C195704467 @default.
- W3180593546 hasConceptScore W3180593546C199360897 @default.
- W3180593546 hasConceptScore W3180593546C2987714656 @default.
- W3180593546 hasConceptScore W3180593546C31510193 @default.
- W3180593546 hasConceptScore W3180593546C31972630 @default.
- W3180593546 hasConceptScore W3180593546C41008148 @default.
- W3180593546 hasConceptScore W3180593546C4641261 @default.
- W3180593546 hasConceptScore W3180593546C63000827 @default.