Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181036294> ?p ?o ?g. }
- W3181036294 endingPage "377" @default.
- W3181036294 startingPage "367" @default.
- W3181036294 abstract "Combinatorial optimization problems are pervasive across science and industry. Modern deep learning tools are poised to solve these problems at unprecedented scales, but a unifying framework that incorporates insights from statistical physics is still outstanding. Here we demonstrate how graph neural networks can be used to solve combinatorial optimization problems. Our approach is broadly applicable to canonical NP-hard problems in the form of quadratic unconstrained binary optimization problems, such as maximum cut, minimum vertex cover, maximum independent set, as well as Ising spin glasses and higher-order generalizations thereof in the form of polynomial unconstrained binary optimization problems. We apply a relaxation strategy to the problem Hamiltonian to generate a differentiable loss function with which we train the graph neural network and apply a simple projection to integer variables once the unsupervised training process has completed. We showcase our approach with numerical results for the canonical maximum cut and maximum independent set problems. We find that the graph neural network optimizer performs on par or outperforms existing solvers, with the ability to scale beyond the state of the art to problems with millions of variables. Combinatorial optimization, the search for the minimum of an objective function within a finite but very large set of candidate solutions, finds many important and challenging applications in science and industry. A new graph neural network deep learning approach that incorporates concepts from statistical physics is used to develop a robust solver that can tackle a large class of NP-hard combinatorial optimization problems." @default.
- W3181036294 created "2021-07-19" @default.
- W3181036294 creator A5017295904 @default.
- W3181036294 creator A5053684051 @default.
- W3181036294 creator A5067554216 @default.
- W3181036294 date "2022-04-21" @default.
- W3181036294 modified "2023-10-16" @default.
- W3181036294 title "Combinatorial optimization with physics-inspired graph neural networks" @default.
- W3181036294 cites W1658958971 @default.
- W3181036294 cites W1669378206 @default.
- W3181036294 cites W1739872454 @default.
- W3181036294 cites W1774926842 @default.
- W3181036294 cites W1859357731 @default.
- W3181036294 cites W1963753244 @default.
- W3181036294 cites W1965444148 @default.
- W3181036294 cites W1967301842 @default.
- W3181036294 cites W197491803 @default.
- W3181036294 cites W1983624953 @default.
- W3181036294 cites W1985123706 @default.
- W3181036294 cites W1986175898 @default.
- W3181036294 cites W2000449275 @default.
- W3181036294 cites W2003902046 @default.
- W3181036294 cites W2022820481 @default.
- W3181036294 cites W2024860775 @default.
- W3181036294 cites W2039122980 @default.
- W3181036294 cites W2042214415 @default.
- W3181036294 cites W2056979696 @default.
- W3181036294 cites W2057162710 @default.
- W3181036294 cites W2060252799 @default.
- W3181036294 cites W2064939459 @default.
- W3181036294 cites W2067612530 @default.
- W3181036294 cites W2068674173 @default.
- W3181036294 cites W2080925589 @default.
- W3181036294 cites W2082345630 @default.
- W3181036294 cites W2089247135 @default.
- W3181036294 cites W2099741751 @default.
- W3181036294 cites W2105614108 @default.
- W3181036294 cites W2110171203 @default.
- W3181036294 cites W2116341502 @default.
- W3181036294 cites W2122604873 @default.
- W3181036294 cites W2126662731 @default.
- W3181036294 cites W2132228337 @default.
- W3181036294 cites W2139906443 @default.
- W3181036294 cites W2159739530 @default.
- W3181036294 cites W2250294758 @default.
- W3181036294 cites W2339932761 @default.
- W3181036294 cites W2538025098 @default.
- W3181036294 cites W2734190907 @default.
- W3181036294 cites W2753021805 @default.
- W3181036294 cites W2765527723 @default.
- W3181036294 cites W2887230019 @default.
- W3181036294 cites W2887603607 @default.
- W3181036294 cites W2891923130 @default.
- W3181036294 cites W2906943923 @default.
- W3181036294 cites W2965605008 @default.
- W3181036294 cites W2972401187 @default.
- W3181036294 cites W2978518535 @default.
- W3181036294 cites W2990475267 @default.
- W3181036294 cites W3006129586 @default.
- W3181036294 cites W3014405689 @default.
- W3181036294 cites W3088578860 @default.
- W3181036294 cites W3098120853 @default.
- W3181036294 cites W3100848837 @default.
- W3181036294 cites W3101073376 @default.
- W3181036294 cites W3101667202 @default.
- W3181036294 cites W3104097132 @default.
- W3181036294 cites W3104307750 @default.
- W3181036294 cites W3104708747 @default.
- W3181036294 cites W3105773508 @default.
- W3181036294 cites W3106073154 @default.
- W3181036294 cites W3107888636 @default.
- W3181036294 cites W3137924099 @default.
- W3181036294 cites W3159953606 @default.
- W3181036294 cites W3188522200 @default.
- W3181036294 cites W3189470799 @default.
- W3181036294 cites W3204834701 @default.
- W3181036294 cites W3211221363 @default.
- W3181036294 cites W3215922063 @default.
- W3181036294 cites W3216405221 @default.
- W3181036294 cites W4210257598 @default.
- W3181036294 cites W4292027170 @default.
- W3181036294 doi "https://doi.org/10.1038/s42256-022-00468-6" @default.
- W3181036294 hasPublicationYear "2022" @default.
- W3181036294 type Work @default.
- W3181036294 sameAs 3181036294 @default.
- W3181036294 citedByCount "34" @default.
- W3181036294 countsByYear W31810362942021 @default.
- W3181036294 countsByYear W31810362942022 @default.
- W3181036294 countsByYear W31810362942023 @default.
- W3181036294 crossrefType "journal-article" @default.
- W3181036294 hasAuthorship W3181036294A5017295904 @default.
- W3181036294 hasAuthorship W3181036294A5053684051 @default.
- W3181036294 hasAuthorship W3181036294A5067554216 @default.
- W3181036294 hasBestOaLocation W31810362942 @default.
- W3181036294 hasConcept C11413529 @default.
- W3181036294 hasConcept C121332964 @default.
- W3181036294 hasConcept C126255220 @default.
- W3181036294 hasConcept C132525143 @default.