Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181049569> ?p ?o ?g. }
- W3181049569 abstract "Abstract Background This article aims to understand the prevalence of hyperlipidemia and its related factors in Shanxi Province. On the basis of multivariate Logistic regression analysis to find out the influencing factors closely related to hyperlipidemia, the complex network connection between various variables was presented through Bayesian networks(BNs). Methods Logistic regression was used to screen for hyperlipidemia-related variables, and then the complex network connection between various variables was presented through BNs. Since some drawbacks stand out in the Max-Min Hill-Climbing (MMHC) hybrid algorithm, extra hybrid algorithms are proposed to construct the BN structure: MMPC-Tabu, Fast.iamb-Tabu and Inter.iamb-Tabu. To assess their performance, we made a comparison between these three hybrid algorithms with the widely used MMHC hybrid algorithm on randomly generated datasets. Afterwards, the optimized BN was determined to explore to study related factors for hyperlipidemia. We also make a comparison between the BN model with logistic regression model. Results The BN constructed by Inter.iamb-Tabu hybrid algorithm had the best fitting degree to the benchmark networks, and was used to construct the BN model of hyperlipidemia. Multivariate logistic regression analysis suggested that gender, smoking, central obesity, daily average salt intake, daily average oil intake, diabetes mellitus, hypertension and physical activity were associated with hyperlipidemia. BNs model of hyperlipidemia further showed that gender, BMI, and physical activity were directly related to the occurrence of hyperlipidemia, hyperlipidemia was directly related to the occurrence of diabetes mellitus and hypertension; the average daily salt intake, daily average oil consumption, smoking, and central obesity were indirectly related to hyperlipidemia. Conclusions The BN of hyperlipidemia constructed by the Inter.iamb-Tabu hybrid algorithm is more reasonable, and allows for the overall linking effect between factors and diseases, revealing the direct and indirect factors associated with hyperlipidemia and correlation between related variables, which can provide a new approach to the study of chronic diseases and their associated factors." @default.
- W3181049569 created "2021-07-19" @default.
- W3181049569 creator A5004708856 @default.
- W3181049569 creator A5008164757 @default.
- W3181049569 creator A5008646383 @default.
- W3181049569 creator A5010791063 @default.
- W3181049569 creator A5016109147 @default.
- W3181049569 creator A5028294527 @default.
- W3181049569 creator A5049758338 @default.
- W3181049569 creator A5054228211 @default.
- W3181049569 creator A5055239193 @default.
- W3181049569 creator A5067370939 @default.
- W3181049569 creator A5069919632 @default.
- W3181049569 creator A5075419373 @default.
- W3181049569 creator A5077408825 @default.
- W3181049569 creator A5084453812 @default.
- W3181049569 date "2021-07-12" @default.
- W3181049569 modified "2023-10-10" @default.
- W3181049569 title "Application of a novel hybrid algorithm of Bayesian network in the study of hyperlipidemia related factors: a cross-sectional study" @default.
- W3181049569 cites W1495330128 @default.
- W3181049569 cites W1831379509 @default.
- W3181049569 cites W1973051513 @default.
- W3181049569 cites W1982040758 @default.
- W3181049569 cites W1984436850 @default.
- W3181049569 cites W1985826111 @default.
- W3181049569 cites W1985902220 @default.
- W3181049569 cites W1986693456 @default.
- W3181049569 cites W1996612805 @default.
- W3181049569 cites W2042878414 @default.
- W3181049569 cites W2091330563 @default.
- W3181049569 cites W2093059493 @default.
- W3181049569 cites W2104355263 @default.
- W3181049569 cites W2113830957 @default.
- W3181049569 cites W2114651828 @default.
- W3181049569 cites W2139168645 @default.
- W3181049569 cites W2141819264 @default.
- W3181049569 cites W2143837989 @default.
- W3181049569 cites W2154835259 @default.
- W3181049569 cites W2165190832 @default.
- W3181049569 cites W2166103330 @default.
- W3181049569 cites W2292665934 @default.
- W3181049569 cites W2296746326 @default.
- W3181049569 cites W2556388764 @default.
- W3181049569 cites W2620337387 @default.
- W3181049569 cites W2727607233 @default.
- W3181049569 cites W2759618930 @default.
- W3181049569 cites W2806746634 @default.
- W3181049569 cites W2939924008 @default.
- W3181049569 cites W2952347539 @default.
- W3181049569 doi "https://doi.org/10.1186/s12889-021-11412-5" @default.
- W3181049569 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8273956" @default.
- W3181049569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34247609" @default.
- W3181049569 hasPublicationYear "2021" @default.
- W3181049569 type Work @default.
- W3181049569 sameAs 3181049569 @default.
- W3181049569 citedByCount "10" @default.
- W3181049569 countsByYear W31810495692021 @default.
- W3181049569 countsByYear W31810495692022 @default.
- W3181049569 countsByYear W31810495692023 @default.
- W3181049569 crossrefType "journal-article" @default.
- W3181049569 hasAuthorship W3181049569A5004708856 @default.
- W3181049569 hasAuthorship W3181049569A5008164757 @default.
- W3181049569 hasAuthorship W3181049569A5008646383 @default.
- W3181049569 hasAuthorship W3181049569A5010791063 @default.
- W3181049569 hasAuthorship W3181049569A5016109147 @default.
- W3181049569 hasAuthorship W3181049569A5028294527 @default.
- W3181049569 hasAuthorship W3181049569A5049758338 @default.
- W3181049569 hasAuthorship W3181049569A5054228211 @default.
- W3181049569 hasAuthorship W3181049569A5055239193 @default.
- W3181049569 hasAuthorship W3181049569A5067370939 @default.
- W3181049569 hasAuthorship W3181049569A5069919632 @default.
- W3181049569 hasAuthorship W3181049569A5075419373 @default.
- W3181049569 hasAuthorship W3181049569A5077408825 @default.
- W3181049569 hasAuthorship W3181049569A5084453812 @default.
- W3181049569 hasBestOaLocation W31810495691 @default.
- W3181049569 hasConcept C105795698 @default.
- W3181049569 hasConcept C11413529 @default.
- W3181049569 hasConcept C126322002 @default.
- W3181049569 hasConcept C134018914 @default.
- W3181049569 hasConcept C142052008 @default.
- W3181049569 hasConcept C151956035 @default.
- W3181049569 hasConcept C161584116 @default.
- W3181049569 hasConcept C2779091943 @default.
- W3181049569 hasConcept C2780586474 @default.
- W3181049569 hasConcept C33724603 @default.
- W3181049569 hasConcept C33923547 @default.
- W3181049569 hasConcept C511355011 @default.
- W3181049569 hasConcept C555293320 @default.
- W3181049569 hasConcept C71924100 @default.
- W3181049569 hasConceptScore W3181049569C105795698 @default.
- W3181049569 hasConceptScore W3181049569C11413529 @default.
- W3181049569 hasConceptScore W3181049569C126322002 @default.
- W3181049569 hasConceptScore W3181049569C134018914 @default.
- W3181049569 hasConceptScore W3181049569C142052008 @default.
- W3181049569 hasConceptScore W3181049569C151956035 @default.
- W3181049569 hasConceptScore W3181049569C161584116 @default.
- W3181049569 hasConceptScore W3181049569C2779091943 @default.
- W3181049569 hasConceptScore W3181049569C2780586474 @default.
- W3181049569 hasConceptScore W3181049569C33724603 @default.
- W3181049569 hasConceptScore W3181049569C33923547 @default.