Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181060580> ?p ?o ?g. }
- W3181060580 endingPage "2580" @default.
- W3181060580 startingPage "2566" @default.
- W3181060580 abstract "The integrated process planning and scheduling (IPPS) problem is studied in this article, in which operation sequencing, process plan selection, and machine selection are decided simultaneously. For different scenarios, three mixed-integer linear programming (MILP) models are designed. Then, in view of the workload of machines and processing times of jobs, two machine selection techniques are introduced to simplify the optimization of these MILP models. By exploring the structural properties of the MILP models, we put forward a novel lower bound to act as a measurement for the performance of the related algorithms. Considering the real-time requirement and complexity of instances in practice, we design a hybrid greedy heuristic based on a new decision structure of the problem and dispatching rules. Furthermore, in order to create effective dispatching rules to improve the hybrid greedy heuristic, enhanced genetic programming (GP)-based iterative approach is proposed. Experimental results indicate that our approaches are better than other available approaches for the IPPS problem and can reduce the computational time while providing high-quality solutions. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —Due to the widespread use of computer numerical control machines and flexible manufacturing systems in the modern manufacturing industry, the IPPS problem has been widely recognized among both academia and industry over the years. So far, many scholars have put forward several approaches to solve this problem. However, for the instances in practical applications, good solutions are still difficult to get in a reasonable time. The rule-based heuristics, on the other hand, have the advantages of practicability and high efficiency, are much more preferred in practice. Nonetheless, it not only takes plenty of time but requires domain expertise to construct valid dispatching rules for complicated production problems. As an evolution-based machine learning approach, GP has been widely utilized to create dispatching rules for certain scheduling problems. Therefore, in this study, an enhanced GP-based iterative approach is proposed to create dispatching rules for the rule-based heuristic. The computational effectiveness and efficiency of the heuristic based on dispatching rules created by GP are verified in experimental results, and it opens the way for handling the IPPS problem in dynamic environments and multiobjective systems in practice." @default.
- W3181060580 created "2021-07-19" @default.
- W3181060580 creator A5013979085 @default.
- W3181060580 creator A5033410253 @default.
- W3181060580 creator A5034794778 @default.
- W3181060580 creator A5062920906 @default.
- W3181060580 date "2022-07-01" @default.
- W3181060580 modified "2023-10-17" @default.
- W3181060580 title "A Genetic Programming-Based Iterative Approach for the Integrated Process Planning and Scheduling Problem" @default.
- W3181060580 cites W1501618457 @default.
- W3181060580 cites W1981029154 @default.
- W3181060580 cites W1983028964 @default.
- W3181060580 cites W1983788549 @default.
- W3181060580 cites W1988720813 @default.
- W3181060580 cites W1993209235 @default.
- W3181060580 cites W1999445878 @default.
- W3181060580 cites W2004799767 @default.
- W3181060580 cites W2010067806 @default.
- W3181060580 cites W2028627224 @default.
- W3181060580 cites W2032816696 @default.
- W3181060580 cites W2038228310 @default.
- W3181060580 cites W2040789431 @default.
- W3181060580 cites W2041197339 @default.
- W3181060580 cites W2046617115 @default.
- W3181060580 cites W2050091965 @default.
- W3181060580 cites W2051164822 @default.
- W3181060580 cites W2052532406 @default.
- W3181060580 cites W2066023121 @default.
- W3181060580 cites W2067709141 @default.
- W3181060580 cites W2068757798 @default.
- W3181060580 cites W2071301299 @default.
- W3181060580 cites W2072545560 @default.
- W3181060580 cites W2074074752 @default.
- W3181060580 cites W2075136187 @default.
- W3181060580 cites W2077266984 @default.
- W3181060580 cites W2087376002 @default.
- W3181060580 cites W2091970056 @default.
- W3181060580 cites W2095173020 @default.
- W3181060580 cites W2130272456 @default.
- W3181060580 cites W2149376645 @default.
- W3181060580 cites W2150156589 @default.
- W3181060580 cites W2166980890 @default.
- W3181060580 cites W2233922516 @default.
- W3181060580 cites W2338305947 @default.
- W3181060580 cites W2339315977 @default.
- W3181060580 cites W2470555278 @default.
- W3181060580 cites W2489788274 @default.
- W3181060580 cites W2807754589 @default.
- W3181060580 cites W2903981726 @default.
- W3181060580 cites W2980930703 @default.
- W3181060580 cites W2985520022 @default.
- W3181060580 cites W3092398537 @default.
- W3181060580 cites W67180755 @default.
- W3181060580 doi "https://doi.org/10.1109/tase.2021.3091610" @default.
- W3181060580 hasPublicationYear "2022" @default.
- W3181060580 type Work @default.
- W3181060580 sameAs 3181060580 @default.
- W3181060580 citedByCount "4" @default.
- W3181060580 countsByYear W31810605802022 @default.
- W3181060580 countsByYear W31810605802023 @default.
- W3181060580 crossrefType "journal-article" @default.
- W3181060580 hasAuthorship W3181060580A5013979085 @default.
- W3181060580 hasAuthorship W3181060580A5033410253 @default.
- W3181060580 hasAuthorship W3181060580A5034794778 @default.
- W3181060580 hasAuthorship W3181060580A5062920906 @default.
- W3181060580 hasConcept C111919701 @default.
- W3181060580 hasConcept C11413529 @default.
- W3181060580 hasConcept C119857082 @default.
- W3181060580 hasConcept C126255220 @default.
- W3181060580 hasConcept C127413603 @default.
- W3181060580 hasConcept C13736549 @default.
- W3181060580 hasConcept C154945302 @default.
- W3181060580 hasConcept C173801870 @default.
- W3181060580 hasConcept C206729178 @default.
- W3181060580 hasConcept C2778476105 @default.
- W3181060580 hasConcept C33923547 @default.
- W3181060580 hasConcept C41008148 @default.
- W3181060580 hasConcept C51823790 @default.
- W3181060580 hasConcept C55416958 @default.
- W3181060580 hasConcept C56086750 @default.
- W3181060580 hasConcept C68387754 @default.
- W3181060580 hasConcept C81917197 @default.
- W3181060580 hasConcept C8880873 @default.
- W3181060580 hasConcept C98045186 @default.
- W3181060580 hasConceptScore W3181060580C111919701 @default.
- W3181060580 hasConceptScore W3181060580C11413529 @default.
- W3181060580 hasConceptScore W3181060580C119857082 @default.
- W3181060580 hasConceptScore W3181060580C126255220 @default.
- W3181060580 hasConceptScore W3181060580C127413603 @default.
- W3181060580 hasConceptScore W3181060580C13736549 @default.
- W3181060580 hasConceptScore W3181060580C154945302 @default.
- W3181060580 hasConceptScore W3181060580C173801870 @default.
- W3181060580 hasConceptScore W3181060580C206729178 @default.
- W3181060580 hasConceptScore W3181060580C2778476105 @default.
- W3181060580 hasConceptScore W3181060580C33923547 @default.
- W3181060580 hasConceptScore W3181060580C41008148 @default.
- W3181060580 hasConceptScore W3181060580C51823790 @default.
- W3181060580 hasConceptScore W3181060580C55416958 @default.