Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181397293> ?p ?o ?g. }
- W3181397293 endingPage "106285" @default.
- W3181397293 startingPage "106285" @default.
- W3181397293 abstract "The emergence of sensor-based Internet of Things (IoT) monitoring technologies have paved the way for conducting large-scale naturalistic driving studies, where continuous kinematic driver-based data are generated, capturing crash/near-crash safety critical events (SCEs) and their precursors. However, it is unknown whether the SCEs risk can be predicted to inform driver decisions in the medium term (e.g., hours ahead) since the literature has focused on SCE predictions either for a given road segment or for automated breaking applications, i.e., immediately before the event. In this paper, we examine the SCE data generated from 20+ million miles-driven by 496 commercial truck drivers to address three main questions. First, whether SCEs can be predicted using disparate driving-related data sources. Second, if so, what the relative importance of the different predictors examined is. Third, whether the prediction models can be generalized to new drivers and future time periods. We show that SCEs can be predicted 30 min in advance, using machine learning techniques and dependent variables capturing the driver’s characteristics, weather conditions, and day/time categories, where an area under the curve (AUC) up to 76% can be achieved. Moreover, the predictive performance remains relatively stable when tested on new (i.e., not in the training set) drivers and a future two-month time period. Our results can inform dispatching and routing applications, and lead to the development of technological interventions to improve driver safety." @default.
- W3181397293 created "2021-07-19" @default.
- W3181397293 creator A5002618939 @default.
- W3181397293 creator A5003805164 @default.
- W3181397293 creator A5018862030 @default.
- W3181397293 creator A5024863972 @default.
- W3181397293 creator A5026376066 @default.
- W3181397293 creator A5051644960 @default.
- W3181397293 creator A5056477284 @default.
- W3181397293 creator A5080407760 @default.
- W3181397293 date "2021-09-01" @default.
- W3181397293 modified "2023-10-14" @default.
- W3181397293 title "Predicting unsafe driving risk among commercial truck drivers using machine learning: Lessons learned from the surveillance of 20 million driving miles" @default.
- W3181397293 cites W1831050183 @default.
- W3181397293 cites W1993220166 @default.
- W3181397293 cites W2016187368 @default.
- W3181397293 cites W2031896749 @default.
- W3181397293 cites W2060661883 @default.
- W3181397293 cites W2077145118 @default.
- W3181397293 cites W2104349879 @default.
- W3181397293 cites W2141041164 @default.
- W3181397293 cites W2161024896 @default.
- W3181397293 cites W2161581167 @default.
- W3181397293 cites W2203247364 @default.
- W3181397293 cites W2333881063 @default.
- W3181397293 cites W2412191466 @default.
- W3181397293 cites W2477171198 @default.
- W3181397293 cites W2588985386 @default.
- W3181397293 cites W2594321289 @default.
- W3181397293 cites W2609891578 @default.
- W3181397293 cites W2618759903 @default.
- W3181397293 cites W2620829832 @default.
- W3181397293 cites W2731770569 @default.
- W3181397293 cites W2797853978 @default.
- W3181397293 cites W2808626748 @default.
- W3181397293 cites W2913985905 @default.
- W3181397293 cites W2950383934 @default.
- W3181397293 cites W2982119822 @default.
- W3181397293 cites W2996705655 @default.
- W3181397293 cites W3006636897 @default.
- W3181397293 cites W3007980143 @default.
- W3181397293 cites W3016414762 @default.
- W3181397293 cites W3046294575 @default.
- W3181397293 cites W309214422 @default.
- W3181397293 cites W3097953753 @default.
- W3181397293 cites W3121452939 @default.
- W3181397293 cites W3151226405 @default.
- W3181397293 doi "https://doi.org/10.1016/j.aap.2021.106285" @default.
- W3181397293 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34256316" @default.
- W3181397293 hasPublicationYear "2021" @default.
- W3181397293 type Work @default.
- W3181397293 sameAs 3181397293 @default.
- W3181397293 citedByCount "6" @default.
- W3181397293 countsByYear W31813972932021 @default.
- W3181397293 countsByYear W31813972932022 @default.
- W3181397293 countsByYear W31813972932023 @default.
- W3181397293 crossrefType "journal-article" @default.
- W3181397293 hasAuthorship W3181397293A5002618939 @default.
- W3181397293 hasAuthorship W3181397293A5003805164 @default.
- W3181397293 hasAuthorship W3181397293A5018862030 @default.
- W3181397293 hasAuthorship W3181397293A5024863972 @default.
- W3181397293 hasAuthorship W3181397293A5026376066 @default.
- W3181397293 hasAuthorship W3181397293A5051644960 @default.
- W3181397293 hasAuthorship W3181397293A5056477284 @default.
- W3181397293 hasAuthorship W3181397293A5080407760 @default.
- W3181397293 hasConcept C112758219 @default.
- W3181397293 hasConcept C118552586 @default.
- W3181397293 hasConcept C124952713 @default.
- W3181397293 hasConcept C127413603 @default.
- W3181397293 hasConcept C142362112 @default.
- W3181397293 hasConcept C154945302 @default.
- W3181397293 hasConcept C15744967 @default.
- W3181397293 hasConcept C166735990 @default.
- W3181397293 hasConcept C171146098 @default.
- W3181397293 hasConcept C177264268 @default.
- W3181397293 hasConcept C183469790 @default.
- W3181397293 hasConcept C199360897 @default.
- W3181397293 hasConcept C22212356 @default.
- W3181397293 hasConcept C27415008 @default.
- W3181397293 hasConcept C3017944768 @default.
- W3181397293 hasConcept C41008148 @default.
- W3181397293 hasConcept C44154836 @default.
- W3181397293 hasConcept C52121051 @default.
- W3181397293 hasConcept C71924100 @default.
- W3181397293 hasConcept C87833898 @default.
- W3181397293 hasConcept C99454951 @default.
- W3181397293 hasConceptScore W3181397293C112758219 @default.
- W3181397293 hasConceptScore W3181397293C118552586 @default.
- W3181397293 hasConceptScore W3181397293C124952713 @default.
- W3181397293 hasConceptScore W3181397293C127413603 @default.
- W3181397293 hasConceptScore W3181397293C142362112 @default.
- W3181397293 hasConceptScore W3181397293C154945302 @default.
- W3181397293 hasConceptScore W3181397293C15744967 @default.
- W3181397293 hasConceptScore W3181397293C166735990 @default.
- W3181397293 hasConceptScore W3181397293C171146098 @default.
- W3181397293 hasConceptScore W3181397293C177264268 @default.
- W3181397293 hasConceptScore W3181397293C183469790 @default.
- W3181397293 hasConceptScore W3181397293C199360897 @default.