Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181431767> ?p ?o ?g. }
- W3181431767 abstract "Vehicular edge computing (VEC), being a novel computing paradigm, promises to provide divergent vehicular edge services, both functional (e.g., charging route prediction, emergency messages, etc.) and infotainment (e.g. video gaming applications, featured movie series, etc.), at the network edge while satisfying application-specific QoS requirements. Vehicles usually send these service requests to nearest roadside units (RSUs), which contain mobile edge servers, according to the functional requirements or the vehicle owner preferences. However, the VEC server's virtual resources may fall short compared to the unbounded amount of real-time service requests (infotainment/functional) during rush hours. This limitation entails VEC servers to fail to meet the stringent latency requirements which may create unwanted malfunction event during driving in the requested vehicles (if functional/critical service requests are delayed in processing). Moreover, the VEC environment's intrinsic properties, i.e. mobility, application-specific distinct latency requirements, traffic congestion, and uncertain task arrival rate, make the VEC task scheduling problem a non-trivial one. In this paper, we propose an extreme reinforcement learning (ERL) based context-aware VEC task scheduler that can make online adaptive scheduling decisions to meet the application-specific latency requirements for both types of tasks (i.e. functional and infotainment). The scheduler can make scheduling decisions directly from its experience without prior knowledge or the VEC environment model. Finally, we present extensive simulation results to confirm the efficacy of the proposed scheduler. Results show that the VEC server can achieve successful (by meeting QoS requirements) task completion rate of above 96% for different task arrival rates (ranging from 10 to 50 arrival/s) using the proposed scheduler. In the simulation, we also analyze the scheduling algorithm's scalability in response to the vertical expansion of the VEC server. Furthermore, we compare the performance of our proposed method with two baseline methods." @default.
- W3181431767 created "2021-07-19" @default.
- W3181431767 creator A5048107620 @default.
- W3181431767 creator A5072953177 @default.
- W3181431767 creator A5078188257 @default.
- W3181431767 date "2021-06-01" @default.
- W3181431767 modified "2023-10-18" @default.
- W3181431767 title "Context-Aware Fine-Grained Task Scheduling at Vehicular Edges: An Extreme Reinforcement Learning based Dynamic Approach" @default.
- W3181431767 cites W2020576273 @default.
- W3181431767 cites W2063281062 @default.
- W3181431767 cites W2118556122 @default.
- W3181431767 cites W2143488688 @default.
- W3181431767 cites W2150273829 @default.
- W3181431767 cites W2167942029 @default.
- W3181431767 cites W2536587200 @default.
- W3181431767 cites W2620387295 @default.
- W3181431767 cites W2624989916 @default.
- W3181431767 cites W2739611732 @default.
- W3181431767 cites W2739916191 @default.
- W3181431767 cites W2747537200 @default.
- W3181431767 cites W2805692280 @default.
- W3181431767 cites W2806153095 @default.
- W3181431767 cites W2887784286 @default.
- W3181431767 cites W2892464762 @default.
- W3181431767 cites W2895973886 @default.
- W3181431767 cites W2897661175 @default.
- W3181431767 cites W2900144640 @default.
- W3181431767 cites W2900804979 @default.
- W3181431767 cites W2918400102 @default.
- W3181431767 cites W2966753637 @default.
- W3181431767 cites W2967043083 @default.
- W3181431767 cites W2991995523 @default.
- W3181431767 cites W2994813045 @default.
- W3181431767 cites W2997953889 @default.
- W3181431767 cites W2998711990 @default.
- W3181431767 cites W3004718830 @default.
- W3181431767 cites W3005620403 @default.
- W3181431767 cites W3009066041 @default.
- W3181431767 cites W3010102820 @default.
- W3181431767 cites W3025624665 @default.
- W3181431767 cites W3037121310 @default.
- W3181431767 cites W3038405775 @default.
- W3181431767 cites W3096031624 @default.
- W3181431767 cites W3099580559 @default.
- W3181431767 cites W3101237615 @default.
- W3181431767 cites W4252214219 @default.
- W3181431767 doi "https://doi.org/10.1109/wowmom51794.2021.00016" @default.
- W3181431767 hasPublicationYear "2021" @default.
- W3181431767 type Work @default.
- W3181431767 sameAs 3181431767 @default.
- W3181431767 citedByCount "2" @default.
- W3181431767 countsByYear W31814317672021 @default.
- W3181431767 countsByYear W31814317672023 @default.
- W3181431767 crossrefType "proceedings-article" @default.
- W3181431767 hasAuthorship W3181431767A5048107620 @default.
- W3181431767 hasAuthorship W3181431767A5072953177 @default.
- W3181431767 hasAuthorship W3181431767A5078188257 @default.
- W3181431767 hasConcept C120314980 @default.
- W3181431767 hasConcept C154945302 @default.
- W3181431767 hasConcept C162307627 @default.
- W3181431767 hasConcept C162324750 @default.
- W3181431767 hasConcept C206729178 @default.
- W3181431767 hasConcept C21547014 @default.
- W3181431767 hasConcept C2778456923 @default.
- W3181431767 hasConcept C31258907 @default.
- W3181431767 hasConcept C41008148 @default.
- W3181431767 hasConcept C5119721 @default.
- W3181431767 hasConcept C76155785 @default.
- W3181431767 hasConcept C79403827 @default.
- W3181431767 hasConcept C82876162 @default.
- W3181431767 hasConcept C93996380 @default.
- W3181431767 hasConcept C97541855 @default.
- W3181431767 hasConceptScore W3181431767C120314980 @default.
- W3181431767 hasConceptScore W3181431767C154945302 @default.
- W3181431767 hasConceptScore W3181431767C162307627 @default.
- W3181431767 hasConceptScore W3181431767C162324750 @default.
- W3181431767 hasConceptScore W3181431767C206729178 @default.
- W3181431767 hasConceptScore W3181431767C21547014 @default.
- W3181431767 hasConceptScore W3181431767C2778456923 @default.
- W3181431767 hasConceptScore W3181431767C31258907 @default.
- W3181431767 hasConceptScore W3181431767C41008148 @default.
- W3181431767 hasConceptScore W3181431767C5119721 @default.
- W3181431767 hasConceptScore W3181431767C76155785 @default.
- W3181431767 hasConceptScore W3181431767C79403827 @default.
- W3181431767 hasConceptScore W3181431767C82876162 @default.
- W3181431767 hasConceptScore W3181431767C93996380 @default.
- W3181431767 hasConceptScore W3181431767C97541855 @default.
- W3181431767 hasLocation W31814317671 @default.
- W3181431767 hasOpenAccess W3181431767 @default.
- W3181431767 hasPrimaryLocation W31814317671 @default.
- W3181431767 hasRelatedWork W2945616868 @default.
- W3181431767 hasRelatedWork W2965675057 @default.
- W3181431767 hasRelatedWork W2971330993 @default.
- W3181431767 hasRelatedWork W3185591558 @default.
- W3181431767 hasRelatedWork W3210409505 @default.
- W3181431767 hasRelatedWork W4200573894 @default.
- W3181431767 hasRelatedWork W4225146258 @default.
- W3181431767 hasRelatedWork W4298234837 @default.
- W3181431767 hasRelatedWork W4313145167 @default.
- W3181431767 hasRelatedWork W4321844361 @default.