Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181463251> ?p ?o ?g. }
- W3181463251 endingPage "3846" @default.
- W3181463251 startingPage "3835" @default.
- W3181463251 abstract "Cyber-Physical-Social Systems (CPSS) provide great value to our lives, but they also cause data overload problems. Data-driven personalized recommendation service is one of the most efficient means to solve such problems, which is currently receiving wide attention from research and industrial communities. The most important task of personalized recommender systems is to predict the click-through rate of given items, which is especially true for personalized advertisement recommendation systems. Recently, a number of deep click-through models have been proposed, which obtain low-dimensional dense embedding vectors of features, and then concatenate together and input into multi-layer perceptron to learn the nonlinear relationship between the features. However, the existing models don't dig deep enough into the user preferences and habits in users’ behavior history. In this paper, we propose a new model: Self-attention based Deep Neural Network (DeepSA), which addresses this issue by constructing Ad-related graph and training graph embedding vectors to enhance the representation of the advertisement for capturing user interests, and learns the internal correlation between user behaviors via the self-attention mechanism, which better explores interests and preferences hidden in users’ historical behaviors. Experiments on two public datasets and an industrial dataset demonstrate the proposed method outperforms the state-of-the-art models." @default.
- W3181463251 created "2021-07-19" @default.
- W3181463251 creator A5012416453 @default.
- W3181463251 creator A5022256556 @default.
- W3181463251 creator A5023187040 @default.
- W3181463251 creator A5031776909 @default.
- W3181463251 creator A5074382616 @default.
- W3181463251 creator A5080928808 @default.
- W3181463251 creator A5081008721 @default.
- W3181463251 creator A5082606335 @default.
- W3181463251 creator A5089192218 @default.
- W3181463251 date "2022-11-01" @default.
- W3181463251 modified "2023-10-15" @default.
- W3181463251 title "Self-Attention Mechanism Enhanced User Interests Modeling for Personalized Recommendation Services in Cyber-Physical-Social Systems" @default.
- W3181463251 cites W1677182931 @default.
- W3181463251 cites W1977606842 @default.
- W3181463251 cites W1983548143 @default.
- W3181463251 cites W2027731328 @default.
- W3181463251 cites W2076618162 @default.
- W3181463251 cites W2090883204 @default.
- W3181463251 cites W2093217068 @default.
- W3181463251 cites W2158698691 @default.
- W3181463251 cites W2289267304 @default.
- W3181463251 cites W2295739661 @default.
- W3181463251 cites W2401064478 @default.
- W3181463251 cites W2443960221 @default.
- W3181463251 cites W2475334473 @default.
- W3181463251 cites W2509235963 @default.
- W3181463251 cites W2522009427 @default.
- W3181463251 cites W2604662567 @default.
- W3181463251 cites W2618530766 @default.
- W3181463251 cites W2723293840 @default.
- W3181463251 cites W2790282462 @default.
- W3181463251 cites W2792891771 @default.
- W3181463251 cites W2914617178 @default.
- W3181463251 cites W2928847532 @default.
- W3181463251 cites W2949274928 @default.
- W3181463251 cites W2962756421 @default.
- W3181463251 cites W2962765626 @default.
- W3181463251 cites W2964636989 @default.
- W3181463251 cites W2983877531 @default.
- W3181463251 cites W2997003244 @default.
- W3181463251 cites W3018808210 @default.
- W3181463251 cites W3039298717 @default.
- W3181463251 cites W3083620949 @default.
- W3181463251 cites W3098723082 @default.
- W3181463251 cites W4212883601 @default.
- W3181463251 cites W4297971002 @default.
- W3181463251 doi "https://doi.org/10.1109/tnse.2021.3093782" @default.
- W3181463251 hasPublicationYear "2022" @default.
- W3181463251 type Work @default.
- W3181463251 sameAs 3181463251 @default.
- W3181463251 citedByCount "3" @default.
- W3181463251 countsByYear W31814632512023 @default.
- W3181463251 crossrefType "journal-article" @default.
- W3181463251 hasAuthorship W3181463251A5012416453 @default.
- W3181463251 hasAuthorship W3181463251A5022256556 @default.
- W3181463251 hasAuthorship W3181463251A5023187040 @default.
- W3181463251 hasAuthorship W3181463251A5031776909 @default.
- W3181463251 hasAuthorship W3181463251A5074382616 @default.
- W3181463251 hasAuthorship W3181463251A5080928808 @default.
- W3181463251 hasAuthorship W3181463251A5081008721 @default.
- W3181463251 hasAuthorship W3181463251A5082606335 @default.
- W3181463251 hasAuthorship W3181463251A5089192218 @default.
- W3181463251 hasConcept C108583219 @default.
- W3181463251 hasConcept C111919701 @default.
- W3181463251 hasConcept C119857082 @default.
- W3181463251 hasConcept C124101348 @default.
- W3181463251 hasConcept C132525143 @default.
- W3181463251 hasConcept C136764020 @default.
- W3181463251 hasConcept C154945302 @default.
- W3181463251 hasConcept C179717631 @default.
- W3181463251 hasConcept C179768478 @default.
- W3181463251 hasConcept C186625053 @default.
- W3181463251 hasConcept C41008148 @default.
- W3181463251 hasConcept C41608201 @default.
- W3181463251 hasConcept C50644808 @default.
- W3181463251 hasConcept C557471498 @default.
- W3181463251 hasConcept C60908668 @default.
- W3181463251 hasConcept C67186912 @default.
- W3181463251 hasConcept C77088390 @default.
- W3181463251 hasConcept C80444323 @default.
- W3181463251 hasConceptScore W3181463251C108583219 @default.
- W3181463251 hasConceptScore W3181463251C111919701 @default.
- W3181463251 hasConceptScore W3181463251C119857082 @default.
- W3181463251 hasConceptScore W3181463251C124101348 @default.
- W3181463251 hasConceptScore W3181463251C132525143 @default.
- W3181463251 hasConceptScore W3181463251C136764020 @default.
- W3181463251 hasConceptScore W3181463251C154945302 @default.
- W3181463251 hasConceptScore W3181463251C179717631 @default.
- W3181463251 hasConceptScore W3181463251C179768478 @default.
- W3181463251 hasConceptScore W3181463251C186625053 @default.
- W3181463251 hasConceptScore W3181463251C41008148 @default.
- W3181463251 hasConceptScore W3181463251C41608201 @default.
- W3181463251 hasConceptScore W3181463251C50644808 @default.
- W3181463251 hasConceptScore W3181463251C557471498 @default.
- W3181463251 hasConceptScore W3181463251C60908668 @default.
- W3181463251 hasConceptScore W3181463251C67186912 @default.