Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181569110> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3181569110 abstract "This study presents an ensemble of predictive models with a focus on the predictive capabilities of Bayesian Additive Regression Trees (BART). Predictions are made for Modulus of Rupture (MOR) and Tensile Strength (IB or Internal Bond) from a wood composites manufacturing process for three product types. Given the large number of predictor variables from the process, variable preselection was used prior to model development. Several regression methods including multiple linear regression, partial least squares regression, neural networks, regression trees, boosted trees, and bootstrap forest are compared with BART. BART had the best predictive performance in validation unanimously for both MOR and IB for two of three products examined. Bootstrap forest validation results were very similar to BART for one of the products. BART validation results of MOR were promising for the nominal product type of 15.88 mm with an <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$r=0.86$</tex> for 10-fold cross validation with root mean square error of prediction (NRMSEP) of 11.89%. BART validation results for IB had an average <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$r=0.84$</tex> for 10-fold cross-validation with a <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$mathrm{NRMSEP}=10.82{%}$</tex> . The high predictive ability of BART may be useful for manufacturers and researchers in applying analytical techniques for process improvement leading to less rework (order reruns due to failing properties) and reject. Predictive modeling techniques like the ones explored in this study may be very important to companies seeking competitive advantage in today's business world that is focused on advanced analytics and data mining." @default.
- W3181569110 created "2021-07-19" @default.
- W3181569110 creator A5022069415 @default.
- W3181569110 date "2020-12-18" @default.
- W3181569110 modified "2023-09-22" @default.
- W3181569110 title "Research on application of various regression prediction models in Wood Composite Products" @default.
- W3181569110 cites W151188459 @default.
- W3181569110 cites W1678356000 @default.
- W3181569110 cites W1965786603 @default.
- W3181569110 cites W1981601683 @default.
- W3181569110 cites W1987748520 @default.
- W3181569110 cites W2010315713 @default.
- W3181569110 cites W2018213095 @default.
- W3181569110 cites W2026009676 @default.
- W3181569110 cites W2056004538 @default.
- W3181569110 cites W2068808443 @default.
- W3181569110 cites W2084169316 @default.
- W3181569110 cites W2113912820 @default.
- W3181569110 cites W2473090313 @default.
- W3181569110 cites W2507067968 @default.
- W3181569110 cites W3099006712 @default.
- W3181569110 doi "https://doi.org/10.1109/icot51877.2020.9468776" @default.
- W3181569110 hasPublicationYear "2020" @default.
- W3181569110 type Work @default.
- W3181569110 sameAs 3181569110 @default.
- W3181569110 citedByCount "0" @default.
- W3181569110 crossrefType "proceedings-article" @default.
- W3181569110 hasAuthorship W3181569110A5022069415 @default.
- W3181569110 hasConcept C105795698 @default.
- W3181569110 hasConcept C119857082 @default.
- W3181569110 hasConcept C139945424 @default.
- W3181569110 hasConcept C152877465 @default.
- W3181569110 hasConcept C154945302 @default.
- W3181569110 hasConcept C22354355 @default.
- W3181569110 hasConcept C27181475 @default.
- W3181569110 hasConcept C33923547 @default.
- W3181569110 hasConcept C41008148 @default.
- W3181569110 hasConcept C45804977 @default.
- W3181569110 hasConcept C48921125 @default.
- W3181569110 hasConcept C83546350 @default.
- W3181569110 hasConceptScore W3181569110C105795698 @default.
- W3181569110 hasConceptScore W3181569110C119857082 @default.
- W3181569110 hasConceptScore W3181569110C139945424 @default.
- W3181569110 hasConceptScore W3181569110C152877465 @default.
- W3181569110 hasConceptScore W3181569110C154945302 @default.
- W3181569110 hasConceptScore W3181569110C22354355 @default.
- W3181569110 hasConceptScore W3181569110C27181475 @default.
- W3181569110 hasConceptScore W3181569110C33923547 @default.
- W3181569110 hasConceptScore W3181569110C41008148 @default.
- W3181569110 hasConceptScore W3181569110C45804977 @default.
- W3181569110 hasConceptScore W3181569110C48921125 @default.
- W3181569110 hasConceptScore W3181569110C83546350 @default.
- W3181569110 hasLocation W31815691101 @default.
- W3181569110 hasOpenAccess W3181569110 @default.
- W3181569110 hasPrimaryLocation W31815691101 @default.
- W3181569110 hasRelatedWork W1987874405 @default.
- W3181569110 hasRelatedWork W2008183088 @default.
- W3181569110 hasRelatedWork W2066413987 @default.
- W3181569110 hasRelatedWork W2325374573 @default.
- W3181569110 hasRelatedWork W2375721435 @default.
- W3181569110 hasRelatedWork W2757711895 @default.
- W3181569110 hasRelatedWork W2966251753 @default.
- W3181569110 hasRelatedWork W4240670533 @default.
- W3181569110 hasRelatedWork W4300642372 @default.
- W3181569110 hasRelatedWork W4308089479 @default.
- W3181569110 isParatext "false" @default.
- W3181569110 isRetracted "false" @default.
- W3181569110 magId "3181569110" @default.
- W3181569110 workType "article" @default.