Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181727745> ?p ?o ?g. }
- W3181727745 endingPage "12" @default.
- W3181727745 startingPage "1" @default.
- W3181727745 abstract "With the increasing availability of multitemporal hyperspectral imagery, hyperspectral change detection under heterogeneous backgrounds is a challenging task. Due to the complexity of background features, traditional change detection algorithms in the spectral domain cannot effectively detect changed features. A novel method using multiple morphological profiles (MMPs) is proposed for hyperspectral change detection to make full use of spatial information. In the designed framework, first, the max-tree/min-tree strategy is applied to extract different attributes of multitemporal hyperspectral images (HSIs), i.e., area attribute and height attribute. Second, a spectral angle weighted-based local absolute distance (SALA) method is designed to reconstruct the discriminative spectral domain. Then, the absolute distance (AD) is adopted to extract changes in constructed feature domain. Finally, a change map is obtained by guided filtering. Experiments conducted on four real hyperspectral datasets demonstrate that the proposed detector achieves better detection performance." @default.
- W3181727745 created "2021-07-19" @default.
- W3181727745 creator A5000432967 @default.
- W3181727745 creator A5016358585 @default.
- W3181727745 creator A5033017179 @default.
- W3181727745 creator A5043019475 @default.
- W3181727745 creator A5067803447 @default.
- W3181727745 date "2022-01-01" @default.
- W3181727745 modified "2023-10-18" @default.
- W3181727745 title "Hyperspectral Change Detection Based on Multiple Morphological Profiles" @default.
- W3181727745 cites W1574100544 @default.
- W3181727745 cites W1977942753 @default.
- W3181727745 cites W1979061792 @default.
- W3181727745 cites W1998090842 @default.
- W3181727745 cites W2001298088 @default.
- W3181727745 cites W2006383776 @default.
- W3181727745 cites W2014374676 @default.
- W3181727745 cites W2073134030 @default.
- W3181727745 cites W2098057602 @default.
- W3181727745 cites W2113513024 @default.
- W3181727745 cites W2116699851 @default.
- W3181727745 cites W2119141275 @default.
- W3181727745 cites W2127199143 @default.
- W3181727745 cites W2128117981 @default.
- W3181727745 cites W2134451879 @default.
- W3181727745 cites W2153864221 @default.
- W3181727745 cites W2157825442 @default.
- W3181727745 cites W2159070926 @default.
- W3181727745 cites W2165548826 @default.
- W3181727745 cites W2334023959 @default.
- W3181727745 cites W2346557146 @default.
- W3181727745 cites W2497075055 @default.
- W3181727745 cites W2528975388 @default.
- W3181727745 cites W2568271140 @default.
- W3181727745 cites W2617050030 @default.
- W3181727745 cites W2740976805 @default.
- W3181727745 cites W2773926432 @default.
- W3181727745 cites W2890376060 @default.
- W3181727745 cites W2900587135 @default.
- W3181727745 cites W2911876518 @default.
- W3181727745 cites W2917189553 @default.
- W3181727745 cites W2948363198 @default.
- W3181727745 cites W2983391997 @default.
- W3181727745 cites W2989751901 @default.
- W3181727745 cites W3011515952 @default.
- W3181727745 cites W3037587714 @default.
- W3181727745 cites W3043719198 @default.
- W3181727745 cites W3091247454 @default.
- W3181727745 cites W3099831940 @default.
- W3181727745 cites W3101012758 @default.
- W3181727745 cites W3104313739 @default.
- W3181727745 cites W3105553032 @default.
- W3181727745 doi "https://doi.org/10.1109/tgrs.2021.3090802" @default.
- W3181727745 hasPublicationYear "2022" @default.
- W3181727745 type Work @default.
- W3181727745 sameAs 3181727745 @default.
- W3181727745 citedByCount "19" @default.
- W3181727745 countsByYear W31817277452021 @default.
- W3181727745 countsByYear W31817277452022 @default.
- W3181727745 countsByYear W31817277452023 @default.
- W3181727745 crossrefType "journal-article" @default.
- W3181727745 hasAuthorship W3181727745A5000432967 @default.
- W3181727745 hasAuthorship W3181727745A5016358585 @default.
- W3181727745 hasAuthorship W3181727745A5033017179 @default.
- W3181727745 hasAuthorship W3181727745A5043019475 @default.
- W3181727745 hasAuthorship W3181727745A5067803447 @default.
- W3181727745 hasConcept C113174947 @default.
- W3181727745 hasConcept C134306372 @default.
- W3181727745 hasConcept C138885662 @default.
- W3181727745 hasConcept C153180895 @default.
- W3181727745 hasConcept C154945302 @default.
- W3181727745 hasConcept C159078339 @default.
- W3181727745 hasConcept C203595873 @default.
- W3181727745 hasConcept C205649164 @default.
- W3181727745 hasConcept C2776401178 @default.
- W3181727745 hasConcept C33923547 @default.
- W3181727745 hasConcept C41008148 @default.
- W3181727745 hasConcept C41895202 @default.
- W3181727745 hasConcept C62649853 @default.
- W3181727745 hasConcept C78660771 @default.
- W3181727745 hasConcept C97931131 @default.
- W3181727745 hasConceptScore W3181727745C113174947 @default.
- W3181727745 hasConceptScore W3181727745C134306372 @default.
- W3181727745 hasConceptScore W3181727745C138885662 @default.
- W3181727745 hasConceptScore W3181727745C153180895 @default.
- W3181727745 hasConceptScore W3181727745C154945302 @default.
- W3181727745 hasConceptScore W3181727745C159078339 @default.
- W3181727745 hasConceptScore W3181727745C203595873 @default.
- W3181727745 hasConceptScore W3181727745C205649164 @default.
- W3181727745 hasConceptScore W3181727745C2776401178 @default.
- W3181727745 hasConceptScore W3181727745C33923547 @default.
- W3181727745 hasConceptScore W3181727745C41008148 @default.
- W3181727745 hasConceptScore W3181727745C41895202 @default.
- W3181727745 hasConceptScore W3181727745C62649853 @default.
- W3181727745 hasConceptScore W3181727745C78660771 @default.
- W3181727745 hasConceptScore W3181727745C97931131 @default.
- W3181727745 hasFunder F4320321001 @default.
- W3181727745 hasFunder F4320322919 @default.