Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181781118> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W3181781118 abstract "Having a real sense of the applied force in catheterization procedures can help surgeons with proper treatment for cardiovascular diseases. Using sensors is not common because of the limitations of catheters and complications related to the safety of patients. In this regard, a sensor free method can be deemed as a safe solution, in which it uses available equipment in the real operation room. In this work, we propose a deep learning method to estimate the contact forces directly from the catheters' image tip without embedding further sensors. A convolutional neural network extracts the catheter's deflections through input images and translates them into the corresponding forces. The architecture of the proposed model has been inspired by the ResNet graph so as to perform a regression. The model can make predictions based on the input images without utilizing any feature extraction or preprocessing steps. An experimental setup was designed and implemented to simulate catheter ablation therapy. Evaluation results show that the proposed method is able to elicit a robust model from the given dataset and approximate the force with proper accuracy. Opting RMSE as the preferred performance metric, the model reached 0.028 N and 0.023 N in estimation error in the x and y direction on the test data set, respectively." @default.
- W3181781118 created "2021-07-19" @default.
- W3181781118 creator A5016384550 @default.
- W3181781118 creator A5045451872 @default.
- W3181781118 creator A5048296786 @default.
- W3181781118 creator A5062342303 @default.
- W3181781118 creator A5070333080 @default.
- W3181781118 creator A5072140277 @default.
- W3181781118 date "2021-06-23" @default.
- W3181781118 modified "2023-09-29" @default.
- W3181781118 title "A Deep Learning Force Estimator System for Intracardiac Catheters" @default.
- W3181781118 cites W2005284429 @default.
- W3181781118 cites W2034219663 @default.
- W3181781118 cites W2038377233 @default.
- W3181781118 cites W2088823887 @default.
- W3181781118 cites W2107789882 @default.
- W3181781118 cites W2108598243 @default.
- W3181781118 cites W2112796928 @default.
- W3181781118 cites W2130666261 @default.
- W3181781118 cites W2166401133 @default.
- W3181781118 cites W2194775991 @default.
- W3181781118 cites W2228579726 @default.
- W3181781118 cites W2809121974 @default.
- W3181781118 cites W639708223 @default.
- W3181781118 cites W1974462545 @default.
- W3181781118 cites W2014057017 @default.
- W3181781118 doi "https://doi.org/10.1109/memea52024.2021.9478710" @default.
- W3181781118 hasPublicationYear "2021" @default.
- W3181781118 type Work @default.
- W3181781118 sameAs 3181781118 @default.
- W3181781118 citedByCount "2" @default.
- W3181781118 countsByYear W31817811182022 @default.
- W3181781118 countsByYear W31817811182023 @default.
- W3181781118 crossrefType "proceedings-article" @default.
- W3181781118 hasAuthorship W3181781118A5016384550 @default.
- W3181781118 hasAuthorship W3181781118A5045451872 @default.
- W3181781118 hasAuthorship W3181781118A5048296786 @default.
- W3181781118 hasAuthorship W3181781118A5062342303 @default.
- W3181781118 hasAuthorship W3181781118A5070333080 @default.
- W3181781118 hasAuthorship W3181781118A5072140277 @default.
- W3181781118 hasConcept C105795698 @default.
- W3181781118 hasConcept C108583219 @default.
- W3181781118 hasConcept C139945424 @default.
- W3181781118 hasConcept C154945302 @default.
- W3181781118 hasConcept C185429906 @default.
- W3181781118 hasConcept C33923547 @default.
- W3181781118 hasConcept C41008148 @default.
- W3181781118 hasConceptScore W3181781118C105795698 @default.
- W3181781118 hasConceptScore W3181781118C108583219 @default.
- W3181781118 hasConceptScore W3181781118C139945424 @default.
- W3181781118 hasConceptScore W3181781118C154945302 @default.
- W3181781118 hasConceptScore W3181781118C185429906 @default.
- W3181781118 hasConceptScore W3181781118C33923547 @default.
- W3181781118 hasConceptScore W3181781118C41008148 @default.
- W3181781118 hasLocation W31817811181 @default.
- W3181781118 hasOpenAccess W3181781118 @default.
- W3181781118 hasPrimaryLocation W31817811181 @default.
- W3181781118 hasRelatedWork W2731899572 @default.
- W3181781118 hasRelatedWork W2939353110 @default.
- W3181781118 hasRelatedWork W2965379502 @default.
- W3181781118 hasRelatedWork W3009238340 @default.
- W3181781118 hasRelatedWork W3125536267 @default.
- W3181781118 hasRelatedWork W3215138031 @default.
- W3181781118 hasRelatedWork W4312962853 @default.
- W3181781118 hasRelatedWork W4321369474 @default.
- W3181781118 hasRelatedWork W4327774331 @default.
- W3181781118 hasRelatedWork W4360585206 @default.
- W3181781118 isParatext "false" @default.
- W3181781118 isRetracted "false" @default.
- W3181781118 magId "3181781118" @default.
- W3181781118 workType "article" @default.