Matches in SemOpenAlex for { <https://semopenalex.org/work/W3181793597> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W3181793597 abstract "Background: Predicting the neoadjuvant chemoradiotherapy (nCRT) response for patient with locally advanced rectal cancer (LARC) would facilitate therapeutic decisions. Yet, the approach to predict the treatment response before nCRT remains challenging. Here, we develop a multicenter deep learning model based on the pretreatment whole slide image (WSI) of hematoxylin and eosin (H&E) stained biopsy to distinguish the pathological complete response (pCR) from the LARC patients.Methods: Consecutive patients with WSI of endoscopic biopsy H&E-stained slides were included from two hospitals as a training cohort (n = 303) and a validation cohort (n = 154), respectively. Tissue regions of each WSI of H&E-stained biopsy slides were automatically segmented and subjected to extract deep features to construct a deep signature by a VGG-16 convolutional neural network model. A prediction model combining the deep signature with clinicopathologic predictors was developed and validated to identify the pCR group. Receiver operating characteristic (ROC) curves and decision curve analysis (DCA) was used to calculate the predictive performance.Findings: The combined model showed good discrimination of the pCR group in two cohorts [the average area under ROC (95% confidence interval): 0.87 (0.83-0.91) in the training cohort, and 0.79 (0.71-0.86) in the independent validation cohort]. Besides, DCA proved that the combined model was clinically valuable.Interpretation: The deep learning model based on biopsy WSI indicates that it might offer a simple preoperative tool to predicts nCRT treatment response for LARC patients.Funding Information: This study was funded by research grants from the National Natural Science Foundation of China [82001986], National Science Fund for Distinguished Young Scholars [81925023], National Key Research and Development Program of China [2017YFC1309102], the Applied Basic Research Projects of Yunnan Province, China [2019FE001-083 and 2018FE001-065], Yunnan digitalization, development and application of biotic resource [202002AA100007].Declaration of Interests: The authors declare that there are no conflicts of interest.Ethics Approval Statement: The ethics committees of the Sixth Affiliated Hospital of Sun Yat-sen University (SYSU6) and Yunnan Cancer Hospital (YNCH) both approved the multicenter retrospective study. The board waived the requirement for informed consent because of the study’s retrospective nature. All data in the study were de-identified and anonymized." @default.
- W3181793597 created "2021-07-19" @default.
- W3181793597 creator A5000148398 @default.
- W3181793597 creator A5006138912 @default.
- W3181793597 creator A5016516907 @default.
- W3181793597 creator A5027702007 @default.
- W3181793597 creator A5047911106 @default.
- W3181793597 creator A5051648513 @default.
- W3181793597 creator A5054510847 @default.
- W3181793597 creator A5059389033 @default.
- W3181793597 creator A5073300995 @default.
- W3181793597 creator A5073479438 @default.
- W3181793597 creator A5081917774 @default.
- W3181793597 creator A5083453098 @default.
- W3181793597 creator A5087109619 @default.
- W3181793597 date "2021-01-01" @default.
- W3181793597 modified "2023-10-11" @default.
- W3181793597 title "Deep Learning for Prediction of Neoadjuvant Chemoradiotherapy Response in Locally Advanced Rectal Cancer: A Retrospective Multi-Cohort Pathomics Study" @default.
- W3181793597 cites W2129112648 @default.
- W3181793597 cites W2133059825 @default.
- W3181793597 cites W2350997045 @default.
- W3181793597 cites W2885824353 @default.
- W3181793597 cites W2933368054 @default.
- W3181793597 cites W2943370629 @default.
- W3181793597 cites W3004016611 @default.
- W3181793597 cites W3004053956 @default.
- W3181793597 cites W3027717081 @default.
- W3181793597 cites W3037093791 @default.
- W3181793597 cites W3043778187 @default.
- W3181793597 cites W3045639672 @default.
- W3181793597 cites W3096109403 @default.
- W3181793597 cites W3126201322 @default.
- W3181793597 cites W4232290744 @default.
- W3181793597 cites W4237469006 @default.
- W3181793597 cites W4244315786 @default.
- W3181793597 cites W4250935139 @default.
- W3181793597 doi "https://doi.org/10.2139/ssrn.3859293" @default.
- W3181793597 hasPublicationYear "2021" @default.
- W3181793597 type Work @default.
- W3181793597 sameAs 3181793597 @default.
- W3181793597 citedByCount "0" @default.
- W3181793597 crossrefType "journal-article" @default.
- W3181793597 hasAuthorship W3181793597A5000148398 @default.
- W3181793597 hasAuthorship W3181793597A5006138912 @default.
- W3181793597 hasAuthorship W3181793597A5016516907 @default.
- W3181793597 hasAuthorship W3181793597A5027702007 @default.
- W3181793597 hasAuthorship W3181793597A5047911106 @default.
- W3181793597 hasAuthorship W3181793597A5051648513 @default.
- W3181793597 hasAuthorship W3181793597A5054510847 @default.
- W3181793597 hasAuthorship W3181793597A5059389033 @default.
- W3181793597 hasAuthorship W3181793597A5073300995 @default.
- W3181793597 hasAuthorship W3181793597A5073479438 @default.
- W3181793597 hasAuthorship W3181793597A5081917774 @default.
- W3181793597 hasAuthorship W3181793597A5083453098 @default.
- W3181793597 hasAuthorship W3181793597A5087109619 @default.
- W3181793597 hasConcept C121608353 @default.
- W3181793597 hasConcept C126322002 @default.
- W3181793597 hasConcept C143998085 @default.
- W3181793597 hasConcept C167135981 @default.
- W3181793597 hasConcept C2778292576 @default.
- W3181793597 hasConcept C2778424827 @default.
- W3181793597 hasConcept C526805850 @default.
- W3181793597 hasConcept C530470458 @default.
- W3181793597 hasConcept C71924100 @default.
- W3181793597 hasConcept C72563966 @default.
- W3181793597 hasConceptScore W3181793597C121608353 @default.
- W3181793597 hasConceptScore W3181793597C126322002 @default.
- W3181793597 hasConceptScore W3181793597C143998085 @default.
- W3181793597 hasConceptScore W3181793597C167135981 @default.
- W3181793597 hasConceptScore W3181793597C2778292576 @default.
- W3181793597 hasConceptScore W3181793597C2778424827 @default.
- W3181793597 hasConceptScore W3181793597C526805850 @default.
- W3181793597 hasConceptScore W3181793597C530470458 @default.
- W3181793597 hasConceptScore W3181793597C71924100 @default.
- W3181793597 hasConceptScore W3181793597C72563966 @default.
- W3181793597 hasLocation W31817935971 @default.
- W3181793597 hasOpenAccess W3181793597 @default.
- W3181793597 hasPrimaryLocation W31817935971 @default.
- W3181793597 hasRelatedWork W2019241984 @default.
- W3181793597 hasRelatedWork W2249625608 @default.
- W3181793597 hasRelatedWork W2362524478 @default.
- W3181793597 hasRelatedWork W2769770852 @default.
- W3181793597 hasRelatedWork W2858928281 @default.
- W3181793597 hasRelatedWork W2887848930 @default.
- W3181793597 hasRelatedWork W2995845977 @default.
- W3181793597 hasRelatedWork W3083293888 @default.
- W3181793597 hasRelatedWork W3085093915 @default.
- W3181793597 hasRelatedWork W3097418689 @default.
- W3181793597 isParatext "false" @default.
- W3181793597 isRetracted "false" @default.
- W3181793597 magId "3181793597" @default.
- W3181793597 workType "article" @default.