Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182037939> ?p ?o ?g. }
- W3182037939 endingPage "737180" @default.
- W3182037939 startingPage "737180" @default.
- W3182037939 abstract "Marine finfish hatcheries often replace small live prey with the larger traditional prey, brine shrimp Artemia , to feed the growing fish larvae. However, research on fish larviculture, including marine ornamental fish, often overlooks the importance of fine-tuning such prey transition. This study investigated the suitable time and approach for the larvae of an ornamental species, orchid dottyback Pseudochromis fridmani , to transit to the Artemia feeding phase. In experiment I, the suitable prey shift time window was estimated by abruptly feeding P. fridmani larvae with newly hatched Artemia nauplii (AN) from 5, 8, 11 or 14 days post-hatching (DPH) until 19 DPH. Although P. fridmani could ingest AN from 5 DPH, the final larval survival of 11-DPH and 14-DPH treatments were significantly higher, and it might relate to the enhanced digestive capability of older larvae. In experiment II, when prey shift began on 9, 11, or 13 DPH, the larvae were either abruptly shifted (AS) to AN feeding, or given a three-day gradual transition (GT) period of co-feeding original prey (rotifers and copepods) with AN before completing the prey switch. By 22 DPH, the prey shift strategy of GT significantly improved larval survival compared to the AS treatments; prey shift time treatments of 11-DPH and 13-DPH also reached significantly higher survival than 9-DPH treatments. However, survival of all individual treatments continued to decrease in the final stage of experiment. To further improve the prey transition success, experiment III investigated the effects of Artemia enrichment and prey shift time, by abruptly feeding larvae with either AN or enriched Artemia metanauplii (EA) from 9, 11, or 13 DPH onwards. Although the larvae fed AN were significantly larger than those fed EA, the absolute differences were small. There was a significant interaction between Artemia type and prey shift time on larval survival. The EA-11-DPH and EA-13-DPH treatments maintained steady survival post prey transition, and reached the highest mean survival of 58 ± 10%, and 55 ± 12% by 20 DPH, respectively. Moreover, while the larvae fed AN abnormally reduced prey intake over time, most larvae in EA-11-DPH and EA-13-DPH treatments still maintained high Artemia ingestion. These results suggest that dietary highly unsaturated fatty acids in enriched Artemia were crucial for larval survival of P. fridmani . Overall, this study shows that P. fridmani larvae could skip AN and directly feed on EA from 11 DPH without compromising survival or feeding performance. • Successful ingestion of Artemia from 5 DPH still led to high larval mortalities. • Survival of P. fridmani larvae fed Artemia before 11 DPH was generally low. • Dietary HUFAs were likely crucial to the P. fridmani larval survival post prey shift. • P. fridmani larvae could skip Artemia nauplii and directly feed on enriched Artemia." @default.
- W3182037939 created "2021-07-19" @default.
- W3182037939 creator A5010621762 @default.
- W3182037939 creator A5087887573 @default.
- W3182037939 date "2021-12-01" @default.
- W3182037939 modified "2023-10-03" @default.
- W3182037939 title "Transition to Artemia feeding phase for orchid dottyback Pseudochromis fridmani larvae: Establishing suitable prey shift time and strategy" @default.
- W3182037939 cites W1592814275 @default.
- W3182037939 cites W1765484758 @default.
- W3182037939 cites W1964726674 @default.
- W3182037939 cites W1968679015 @default.
- W3182037939 cites W1971290700 @default.
- W3182037939 cites W1972157847 @default.
- W3182037939 cites W1973321805 @default.
- W3182037939 cites W1973986356 @default.
- W3182037939 cites W1976561208 @default.
- W3182037939 cites W1979018131 @default.
- W3182037939 cites W1981625449 @default.
- W3182037939 cites W1995759129 @default.
- W3182037939 cites W1997585926 @default.
- W3182037939 cites W2009655337 @default.
- W3182037939 cites W2011376700 @default.
- W3182037939 cites W2016438917 @default.
- W3182037939 cites W2022833119 @default.
- W3182037939 cites W2033296431 @default.
- W3182037939 cites W2034072948 @default.
- W3182037939 cites W2037292945 @default.
- W3182037939 cites W2049702186 @default.
- W3182037939 cites W2051263485 @default.
- W3182037939 cites W2056846466 @default.
- W3182037939 cites W2066114150 @default.
- W3182037939 cites W2071807384 @default.
- W3182037939 cites W2075766815 @default.
- W3182037939 cites W2078189009 @default.
- W3182037939 cites W2081631711 @default.
- W3182037939 cites W2081840206 @default.
- W3182037939 cites W2084399082 @default.
- W3182037939 cites W2085221389 @default.
- W3182037939 cites W2085781733 @default.
- W3182037939 cites W2093904317 @default.
- W3182037939 cites W2105127230 @default.
- W3182037939 cites W2134841225 @default.
- W3182037939 cites W2138474484 @default.
- W3182037939 cites W2139757028 @default.
- W3182037939 cites W2146176751 @default.
- W3182037939 cites W2155705167 @default.
- W3182037939 cites W2155740027 @default.
- W3182037939 cites W223182787 @default.
- W3182037939 cites W2259664696 @default.
- W3182037939 cites W2276579626 @default.
- W3182037939 cites W2301233640 @default.
- W3182037939 cites W2580438692 @default.
- W3182037939 cites W2611650048 @default.
- W3182037939 cites W2765761981 @default.
- W3182037939 cites W2791206912 @default.
- W3182037939 cites W2791281838 @default.
- W3182037939 cites W2793568885 @default.
- W3182037939 cites W2795288005 @default.
- W3182037939 cites W2799749726 @default.
- W3182037939 cites W2898717071 @default.
- W3182037939 cites W2918628783 @default.
- W3182037939 cites W2936619849 @default.
- W3182037939 cites W3011758960 @default.
- W3182037939 cites W3041939736 @default.
- W3182037939 cites W3158260770 @default.
- W3182037939 cites W3172505125 @default.
- W3182037939 cites W4249580195 @default.
- W3182037939 doi "https://doi.org/10.1016/j.aquaculture.2021.737180" @default.
- W3182037939 hasPublicationYear "2021" @default.
- W3182037939 type Work @default.
- W3182037939 sameAs 3182037939 @default.
- W3182037939 citedByCount "2" @default.
- W3182037939 countsByYear W31820379392022 @default.
- W3182037939 countsByYear W31820379392023 @default.
- W3182037939 crossrefType "journal-article" @default.
- W3182037939 hasAuthorship W3182037939A5010621762 @default.
- W3182037939 hasAuthorship W3182037939A5087887573 @default.
- W3182037939 hasConcept C140793950 @default.
- W3182037939 hasConcept C173758957 @default.
- W3182037939 hasConcept C188382862 @default.
- W3182037939 hasConcept C18903297 @default.
- W3182037939 hasConcept C19269858 @default.
- W3182037939 hasConcept C2775873308 @default.
- W3182037939 hasConcept C2777181938 @default.
- W3182037939 hasConcept C2777744765 @default.
- W3182037939 hasConcept C505870484 @default.
- W3182037939 hasConcept C86803240 @default.
- W3182037939 hasConcept C90856448 @default.
- W3182037939 hasConceptScore W3182037939C140793950 @default.
- W3182037939 hasConceptScore W3182037939C173758957 @default.
- W3182037939 hasConceptScore W3182037939C188382862 @default.
- W3182037939 hasConceptScore W3182037939C18903297 @default.
- W3182037939 hasConceptScore W3182037939C19269858 @default.
- W3182037939 hasConceptScore W3182037939C2775873308 @default.
- W3182037939 hasConceptScore W3182037939C2777181938 @default.
- W3182037939 hasConceptScore W3182037939C2777744765 @default.
- W3182037939 hasConceptScore W3182037939C505870484 @default.
- W3182037939 hasConceptScore W3182037939C86803240 @default.