Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182039229> ?p ?o ?g. }
- W3182039229 abstract "Background: Elderly patients undergoing hip fracture repair surgery are at increased risk of delirium due to aging, comorbidities, and frailty. But current methods for identifying the high risk of delirium among hospitalized patients have moderate accuracy and require extra questionnaires. Artificial intelligence makes it possible to establish machine learning models that predict incident delirium risk based on electronic health data. Methods: We conducted a retrospective case-control study on elderly patients (≥65 years of age) who received orthopedic repair with hip fracture under spinal or general anesthesia between June 1, 2018, and May 31, 2019. Anesthesia records and medical charts were reviewed to collect demographic, surgical, anesthetic features, and frailty index to explore potential risk factors for postoperative delirium. Delirium was assessed by trained nurses using the Confusion Assessment Method (CAM) every 12 h during the hospital stay. Four machine learning risk models were constructed to predict the incidence of postoperative delirium: random forest, eXtreme Gradient Boosting (XGBoosting), support vector machine (SVM), and multilayer perception (MLP). K-fold cross-validation was deployed to accomplish internal validation and performance evaluation. Results: About 245 patients were included and postoperative delirium affected 12.2% (30/245) of the patients. Multiple logistic regression revealed that dementia/history of stroke [OR 3.063, 95% CI (1.231, 7.624)], blood transfusion [OR 2.631, 95% CI (1.055, 6.559)], and preparation time [OR 1.476, 95% CI (1.170, 1.862)] were associated with postoperative delirium, achieving an area under receiver operating curve (AUC) of 0.779, 95% CI (0.703, 0.856). The accuracy of machine learning models for predicting the occurrence of postoperative delirium ranged from 83.67 to 87.75%. Machine learning methods detected 16 risk factors contributing to the development of delirium. Preparation time, frailty index uses of vasopressors during the surgery, dementia/history of stroke, duration of surgery, and anesthesia were the six most important risk factors of delirium. Conclusion: Electronic chart-derived machine learning models could generate hospital-specific delirium prediction models and calculate the contribution of risk factors to the occurrence of delirium. Further research is needed to evaluate the significance and applicability of electronic chart-derived machine learning models for the detection risk of delirium in elderly patients undergoing hip fracture repair surgeries." @default.
- W3182039229 created "2021-07-19" @default.
- W3182039229 creator A5001294145 @default.
- W3182039229 creator A5008656722 @default.
- W3182039229 creator A5013876507 @default.
- W3182039229 creator A5054957161 @default.
- W3182039229 date "2021-07-13" @default.
- W3182039229 modified "2023-09-30" @default.
- W3182039229 title "Machine Learning Algorithm Using Electronic Chart-Derived Data to Predict Delirium After Elderly Hip Fracture Surgeries: A Retrospective Case-Control Study" @default.
- W3182039229 cites W1787224781 @default.
- W3182039229 cites W2073583811 @default.
- W3182039229 cites W2126094287 @default.
- W3182039229 cites W2130373985 @default.
- W3182039229 cites W2141710162 @default.
- W3182039229 cites W2158143121 @default.
- W3182039229 cites W2175060565 @default.
- W3182039229 cites W2265125162 @default.
- W3182039229 cites W2292647651 @default.
- W3182039229 cites W2397212734 @default.
- W3182039229 cites W2557738935 @default.
- W3182039229 cites W2562251009 @default.
- W3182039229 cites W2586426771 @default.
- W3182039229 cites W2615871188 @default.
- W3182039229 cites W2737378304 @default.
- W3182039229 cites W2762741128 @default.
- W3182039229 cites W2791693780 @default.
- W3182039229 cites W2800306313 @default.
- W3182039229 cites W2885408863 @default.
- W3182039229 cites W2885723710 @default.
- W3182039229 cites W2895451528 @default.
- W3182039229 cites W2896347269 @default.
- W3182039229 cites W2898754123 @default.
- W3182039229 cites W3004873902 @default.
- W3182039229 cites W3021783622 @default.
- W3182039229 cites W3094277473 @default.
- W3182039229 doi "https://doi.org/10.3389/fsurg.2021.634629" @default.
- W3182039229 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/8313764" @default.
- W3182039229 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34327210" @default.
- W3182039229 hasPublicationYear "2021" @default.
- W3182039229 type Work @default.
- W3182039229 sameAs 3182039229 @default.
- W3182039229 citedByCount "18" @default.
- W3182039229 countsByYear W31820392292022 @default.
- W3182039229 countsByYear W31820392292023 @default.
- W3182039229 crossrefType "journal-article" @default.
- W3182039229 hasAuthorship W3182039229A5001294145 @default.
- W3182039229 hasAuthorship W3182039229A5008656722 @default.
- W3182039229 hasAuthorship W3182039229A5013876507 @default.
- W3182039229 hasAuthorship W3182039229A5054957161 @default.
- W3182039229 hasBestOaLocation W31820392291 @default.
- W3182039229 hasConcept C11413529 @default.
- W3182039229 hasConcept C119857082 @default.
- W3182039229 hasConcept C120665830 @default.
- W3182039229 hasConcept C121332964 @default.
- W3182039229 hasConcept C126322002 @default.
- W3182039229 hasConcept C141071460 @default.
- W3182039229 hasConcept C151956035 @default.
- W3182039229 hasConcept C167135981 @default.
- W3182039229 hasConcept C177713679 @default.
- W3182039229 hasConcept C194828623 @default.
- W3182039229 hasConcept C195910791 @default.
- W3182039229 hasConcept C2776541429 @default.
- W3182039229 hasConcept C2778885795 @default.
- W3182039229 hasConcept C2779753318 @default.
- W3182039229 hasConcept C41008148 @default.
- W3182039229 hasConcept C58471807 @default.
- W3182039229 hasConcept C61511704 @default.
- W3182039229 hasConcept C71924100 @default.
- W3182039229 hasConceptScore W3182039229C11413529 @default.
- W3182039229 hasConceptScore W3182039229C119857082 @default.
- W3182039229 hasConceptScore W3182039229C120665830 @default.
- W3182039229 hasConceptScore W3182039229C121332964 @default.
- W3182039229 hasConceptScore W3182039229C126322002 @default.
- W3182039229 hasConceptScore W3182039229C141071460 @default.
- W3182039229 hasConceptScore W3182039229C151956035 @default.
- W3182039229 hasConceptScore W3182039229C167135981 @default.
- W3182039229 hasConceptScore W3182039229C177713679 @default.
- W3182039229 hasConceptScore W3182039229C194828623 @default.
- W3182039229 hasConceptScore W3182039229C195910791 @default.
- W3182039229 hasConceptScore W3182039229C2776541429 @default.
- W3182039229 hasConceptScore W3182039229C2778885795 @default.
- W3182039229 hasConceptScore W3182039229C2779753318 @default.
- W3182039229 hasConceptScore W3182039229C41008148 @default.
- W3182039229 hasConceptScore W3182039229C58471807 @default.
- W3182039229 hasConceptScore W3182039229C61511704 @default.
- W3182039229 hasConceptScore W3182039229C71924100 @default.
- W3182039229 hasFunder F4320328813 @default.
- W3182039229 hasLocation W31820392291 @default.
- W3182039229 hasLocation W31820392292 @default.
- W3182039229 hasLocation W31820392293 @default.
- W3182039229 hasOpenAccess W3182039229 @default.
- W3182039229 hasPrimaryLocation W31820392291 @default.
- W3182039229 hasRelatedWork W1969250764 @default.
- W3182039229 hasRelatedWork W1976058051 @default.
- W3182039229 hasRelatedWork W2413566464 @default.
- W3182039229 hasRelatedWork W2610853119 @default.
- W3182039229 hasRelatedWork W2964823534 @default.
- W3182039229 hasRelatedWork W3047552631 @default.
- W3182039229 hasRelatedWork W3099386970 @default.
- W3182039229 hasRelatedWork W4281386993 @default.