Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182040604> ?p ?o ?g. }
- W3182040604 endingPage "387" @default.
- W3182040604 startingPage "379" @default.
- W3182040604 abstract "Cohort selection is an essential prerequisite for clinical research, determining whether an individual satisfies given selection criteria. Previous works for cohort selection usually treated each selection criterion independently and ignored not only the meaning of each selection criterion but the relations among cohort selection criteria. To solve the problems above, we propose a novel unified machine reading comprehension (MRC) framework. In this MRC framework, we design simple rules to generate questions for each criterion from cohort selection guidelines and treat clues extracted by trigger words from patients' medical records as passages. A series of state-of-the-art MRC models based on BiDAF, BIMPM, BERT, BioBERT, NCBI-BERT, and RoBERTa are deployed to determine which question and passage pairs match. We also introduce a cross-criterion attention mechanism on representations of question and passage pairs to model relations among cohort selection criteria. Results on two datasets, that is, the dataset of the 2018 National NLP Clinical Challenge (N2C2) for cohort selection and a dataset from the MIMIC-III dataset, show that our NCBI-BERT MRC model with cross-criterion attention mechanism achieves the highest micro-averaged F1-score of 0.9070 on the N2C2 dataset and 0.8353 on the MIMIC-III dataset. It is competitive to the best system that relies on a large number of rules defined by medical experts on the N2C2 dataset. Comparing these two models, we find that the NCBI-BERT MRC model mainly performs worse on mathematical logic criteria. When using rules instead of the NCBI-BERT MRC model on some criteria regarding mathematical logic on the N2C2 dataset, we obtain a new benchmark with an F1-score of 0.9163, indicating that it is easy to integrate rules into MRC models for improvement." @default.
- W3182040604 created "2021-07-19" @default.
- W3182040604 creator A5014238603 @default.
- W3182040604 creator A5031742177 @default.
- W3182040604 creator A5056505424 @default.
- W3182040604 creator A5063233389 @default.
- W3182040604 creator A5072624830 @default.
- W3182040604 date "2022-01-01" @default.
- W3182040604 modified "2023-09-26" @default.
- W3182040604 title "A Unified Machine Reading Comprehension Framework for Cohort Selection" @default.
- W3182040604 cites W1504212872 @default.
- W3182040604 cites W2109206523 @default.
- W3182040604 cites W2114847203 @default.
- W3182040604 cites W2132724073 @default.
- W3182040604 cites W2146089916 @default.
- W3182040604 cites W2149269919 @default.
- W3182040604 cites W2159583324 @default.
- W3182040604 cites W2162800060 @default.
- W3182040604 cites W2168110744 @default.
- W3182040604 cites W2504095381 @default.
- W3182040604 cites W2518582440 @default.
- W3182040604 cites W2593833795 @default.
- W3182040604 cites W2604410201 @default.
- W3182040604 cites W2606964149 @default.
- W3182040604 cites W2789244308 @default.
- W3182040604 cites W2889787757 @default.
- W3182040604 cites W2890016343 @default.
- W3182040604 cites W2922288834 @default.
- W3182040604 cites W2949922292 @default.
- W3182040604 cites W2950722229 @default.
- W3182040604 cites W2951591277 @default.
- W3182040604 cites W2961415574 @default.
- W3182040604 cites W2962739339 @default.
- W3182040604 cites W2962985038 @default.
- W3182040604 cites W2963506049 @default.
- W3182040604 cites W2963748441 @default.
- W3182040604 cites W2963898730 @default.
- W3182040604 cites W2963963993 @default.
- W3182040604 cites W2964584394 @default.
- W3182040604 cites W2970327629 @default.
- W3182040604 cites W2971258845 @default.
- W3182040604 cites W2972984751 @default.
- W3182040604 cites W2974214648 @default.
- W3182040604 cites W2975249097 @default.
- W3182040604 cites W2979284462 @default.
- W3182040604 cites W3012592703 @default.
- W3182040604 cites W3035625205 @default.
- W3182040604 cites W3081510302 @default.
- W3182040604 cites W3103111734 @default.
- W3182040604 cites W3104486441 @default.
- W3182040604 doi "https://doi.org/10.1109/jbhi.2021.3095478" @default.
- W3182040604 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34236972" @default.
- W3182040604 hasPublicationYear "2022" @default.
- W3182040604 type Work @default.
- W3182040604 sameAs 3182040604 @default.
- W3182040604 citedByCount "1" @default.
- W3182040604 countsByYear W31820406042023 @default.
- W3182040604 crossrefType "journal-article" @default.
- W3182040604 hasAuthorship W3182040604A5014238603 @default.
- W3182040604 hasAuthorship W3182040604A5031742177 @default.
- W3182040604 hasAuthorship W3182040604A5056505424 @default.
- W3182040604 hasAuthorship W3182040604A5063233389 @default.
- W3182040604 hasAuthorship W3182040604A5072624830 @default.
- W3182040604 hasConcept C105795698 @default.
- W3182040604 hasConcept C119857082 @default.
- W3182040604 hasConcept C154945302 @default.
- W3182040604 hasConcept C204321447 @default.
- W3182040604 hasConcept C33923547 @default.
- W3182040604 hasConcept C41008148 @default.
- W3182040604 hasConcept C72563966 @default.
- W3182040604 hasConcept C81917197 @default.
- W3182040604 hasConcept C93959086 @default.
- W3182040604 hasConceptScore W3182040604C105795698 @default.
- W3182040604 hasConceptScore W3182040604C119857082 @default.
- W3182040604 hasConceptScore W3182040604C154945302 @default.
- W3182040604 hasConceptScore W3182040604C204321447 @default.
- W3182040604 hasConceptScore W3182040604C33923547 @default.
- W3182040604 hasConceptScore W3182040604C41008148 @default.
- W3182040604 hasConceptScore W3182040604C72563966 @default.
- W3182040604 hasConceptScore W3182040604C81917197 @default.
- W3182040604 hasConceptScore W3182040604C93959086 @default.
- W3182040604 hasFunder F4320321001 @default.
- W3182040604 hasIssue "1" @default.
- W3182040604 hasLocation W31820406041 @default.
- W3182040604 hasLocation W31820406042 @default.
- W3182040604 hasOpenAccess W3182040604 @default.
- W3182040604 hasPrimaryLocation W31820406041 @default.
- W3182040604 hasRelatedWork W2961085424 @default.
- W3182040604 hasRelatedWork W2963373297 @default.
- W3182040604 hasRelatedWork W3046775127 @default.
- W3182040604 hasRelatedWork W3170094116 @default.
- W3182040604 hasRelatedWork W4205958290 @default.
- W3182040604 hasRelatedWork W4285260836 @default.
- W3182040604 hasRelatedWork W4286629047 @default.
- W3182040604 hasRelatedWork W4306321456 @default.
- W3182040604 hasRelatedWork W4306674287 @default.
- W3182040604 hasRelatedWork W4224009465 @default.
- W3182040604 hasVolume "26" @default.