Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182064909> ?p ?o ?g. }
- W3182064909 endingPage "300" @default.
- W3182064909 startingPage "291" @default.
- W3182064909 abstract "Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML) technology have brought on substantial strides in predicting and identifying health emergencies, disease populations, and disease state and immune response, amongst a few. Although, skepticism remains regarding the practical application and interpretation of results from ML-based approaches in healthcare settings, the inclusion of these approaches is increasing at a rapid pace. Here we provide a brief overview of machine learning-based approaches and learning algorithms including supervised, unsupervised, and reinforcement learning along with examples. Second, we discuss the application of ML in several healthcare fields, including radiology, genetics, electronic health records, and neuroimaging. We also briefly discuss the risks and challenges of ML application to healthcare such as system privacy and ethical concerns and provide suggestions for future applications." @default.
- W3182064909 created "2021-07-19" @default.
- W3182064909 creator A5011008433 @default.
- W3182064909 creator A5042560296 @default.
- W3182064909 date "2021-12-16" @default.
- W3182064909 modified "2023-10-10" @default.
- W3182064909 title "Machine Learning in Healthcare" @default.
- W3182064909 cites W1584579659 @default.
- W3182064909 cites W1588766957 @default.
- W3182064909 cites W1908089122 @default.
- W3182064909 cites W191972653 @default.
- W3182064909 cites W2030499735 @default.
- W3182064909 cites W2042891941 @default.
- W3182064909 cites W2046912033 @default.
- W3182064909 cites W2069317808 @default.
- W3182064909 cites W2077544344 @default.
- W3182064909 cites W2103185075 @default.
- W3182064909 cites W2104827281 @default.
- W3182064909 cites W2117684832 @default.
- W3182064909 cites W2119404293 @default.
- W3182064909 cites W2134430874 @default.
- W3182064909 cites W2142408637 @default.
- W3182064909 cites W2189134727 @default.
- W3182064909 cites W2226243673 @default.
- W3182064909 cites W2561981131 @default.
- W3182064909 cites W2581082771 @default.
- W3182064909 cites W2584973635 @default.
- W3182064909 cites W2587106090 @default.
- W3182064909 cites W2606915822 @default.
- W3182064909 cites W2610332124 @default.
- W3182064909 cites W2618613105 @default.
- W3182064909 cites W2726053863 @default.
- W3182064909 cites W2740658361 @default.
- W3182064909 cites W2759511880 @default.
- W3182064909 cites W2781931843 @default.
- W3182064909 cites W2786426577 @default.
- W3182064909 cites W2787206763 @default.
- W3182064909 cites W2788426287 @default.
- W3182064909 cites W2790110059 @default.
- W3182064909 cites W2791063712 @default.
- W3182064909 cites W2792683657 @default.
- W3182064909 cites W2807683509 @default.
- W3182064909 cites W2810756255 @default.
- W3182064909 cites W2883790289 @default.
- W3182064909 cites W2886819502 @default.
- W3182064909 cites W2891210592 @default.
- W3182064909 cites W2893202038 @default.
- W3182064909 cites W2897297550 @default.
- W3182064909 cites W2903184288 @default.
- W3182064909 cites W2913275455 @default.
- W3182064909 cites W2914108393 @default.
- W3182064909 cites W2914209001 @default.
- W3182064909 cites W2920972911 @default.
- W3182064909 cites W2924551358 @default.
- W3182064909 cites W2941936861 @default.
- W3182064909 cites W2943491685 @default.
- W3182064909 cites W2953226042 @default.
- W3182064909 cites W2963673836 @default.
- W3182064909 cites W2970107881 @default.
- W3182064909 cites W2971123115 @default.
- W3182064909 cites W2973312556 @default.
- W3182064909 cites W2974726644 @default.
- W3182064909 cites W2978628464 @default.
- W3182064909 cites W2981679558 @default.
- W3182064909 cites W2984413259 @default.
- W3182064909 cites W2994757174 @default.
- W3182064909 cites W2995073660 @default.
- W3182064909 cites W2996474037 @default.
- W3182064909 cites W2998175747 @default.
- W3182064909 cites W3023669192 @default.
- W3182064909 cites W3027296076 @default.
- W3182064909 cites W3030870789 @default.
- W3182064909 cites W3044326329 @default.
- W3182064909 cites W3095544488 @default.
- W3182064909 cites W3106417893 @default.
- W3182064909 cites W3112333362 @default.
- W3182064909 cites W3114324465 @default.
- W3182064909 doi "https://doi.org/10.2174/1389202922666210705124359" @default.
- W3182064909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35273459" @default.
- W3182064909 hasPublicationYear "2021" @default.
- W3182064909 type Work @default.
- W3182064909 sameAs 3182064909 @default.
- W3182064909 citedByCount "33" @default.
- W3182064909 countsByYear W31820649092022 @default.
- W3182064909 countsByYear W31820649092023 @default.
- W3182064909 crossrefType "journal-article" @default.
- W3182064909 hasAuthorship W3182064909A5011008433 @default.
- W3182064909 hasAuthorship W3182064909A5042560296 @default.
- W3182064909 hasBestOaLocation W31820649092 @default.
- W3182064909 hasConcept C109359841 @default.
- W3182064909 hasConcept C119857082 @default.
- W3182064909 hasConcept C13280743 @default.
- W3182064909 hasConcept C154945302 @default.
- W3182064909 hasConcept C15744967 @default.
- W3182064909 hasConcept C160735492 @default.
- W3182064909 hasConcept C162324750 @default.
- W3182064909 hasConcept C205649164 @default.
- W3182064909 hasConcept C2522767166 @default.