Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182078573> ?p ?o ?g. }
- W3182078573 endingPage "2733" @default.
- W3182078573 startingPage "2723" @default.
- W3182078573 abstract "Carotid ultrasound measurement of total plaque area (TPA) provides a method for quantifying carotid plaque burden and monitoring changes in carotid atherosclerosis in response to medical treatment. Plaque boundary segmentation is required to generate the TPA measurement; however, training of observers and manual delineation are time consuming. Thus, our objective was to develop an automated plaque segmentation method to generate TPA from longitudinal carotid ultrasound images. In this study, a deep learning-based method, modified U-Net, was used to train the segmentation model and generate TPA measurement. A total of 510 plaques from 144 patients were used in our study, where the Monte Carlo cross-validation was used by randomly splitting the data set into 2/3 and 1/3 for training and testing. Two observers were trained to manually delineate the 510 plaques separately, which were used as the ground-truth references. Two U-Net models (M1 and M2) were trained using the two different ground-truth data sets from the two observers to evaluate the accuracy, variability and sensitivity on the ground-truth data sets used for training our method. The results of the algorithm segmentations of the two models yielded strong agreement with the two manual segmentations with the Pearson correlation coefficient r = 0.989 (p < 0.0001) and r = 0.987 (p < 0.0001). Comparison of the U-Net and manual segmentations resulted in mean TPA differences of 0.05 ± 7.13 mm2 (95% confidence interval: 14.02-13.02 mm2) and 0.8 ± 8.7 mm2 (17.85-16.25 mm2) for the two models, which are small compared with the TPA range in our data set from 4.7 to 312.8 mm2. Furthermore, the mean time to segment a plaque was only 8.3 ± 3.1 ms. The presented deep learning-based method described has sufficient accuracy with a short computation time and exhibits high agreement between the algorithm and manual TPA measurements, suggesting that the method could be used to measure TPA and to monitor the progression and regression of carotid atherosclerosis." @default.
- W3182078573 created "2021-07-19" @default.
- W3182078573 creator A5004966232 @default.
- W3182078573 creator A5016780725 @default.
- W3182078573 creator A5029328817 @default.
- W3182078573 creator A5032952854 @default.
- W3182078573 creator A5042992199 @default.
- W3182078573 creator A5049161615 @default.
- W3182078573 creator A5060997415 @default.
- W3182078573 creator A5062053655 @default.
- W3182078573 creator A5090959478 @default.
- W3182078573 date "2021-09-01" @default.
- W3182078573 modified "2023-10-17" @default.
- W3182078573 title "Deep Learning-Based Carotid Plaque Segmentation from B-Mode Ultrasound Images" @default.
- W3182078573 cites W1967085646 @default.
- W3182078573 cites W2006676204 @default.
- W3182078573 cites W2014542164 @default.
- W3182078573 cites W2034463755 @default.
- W3182078573 cites W2037803098 @default.
- W3182078573 cites W2108321726 @default.
- W3182078573 cites W2117671579 @default.
- W3182078573 cites W2118514093 @default.
- W3182078573 cites W2125096763 @default.
- W3182078573 cites W2128983509 @default.
- W3182078573 cites W2130802987 @default.
- W3182078573 cites W2133774886 @default.
- W3182078573 cites W2144067918 @default.
- W3182078573 cites W2145302208 @default.
- W3182078573 cites W2149164488 @default.
- W3182078573 cites W2164709720 @default.
- W3182078573 cites W2169432269 @default.
- W3182078573 cites W2306504501 @default.
- W3182078573 cites W2417931305 @default.
- W3182078573 cites W2521912743 @default.
- W3182078573 cites W2545416077 @default.
- W3182078573 cites W2761877971 @default.
- W3182078573 cites W2794990008 @default.
- W3182078573 cites W2913705661 @default.
- W3182078573 cites W2944775438 @default.
- W3182078573 cites W2955805697 @default.
- W3182078573 cites W2970710033 @default.
- W3182078573 cites W3082885115 @default.
- W3182078573 doi "https://doi.org/10.1016/j.ultrasmedbio.2021.05.023" @default.
- W3182078573 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/34217560" @default.
- W3182078573 hasPublicationYear "2021" @default.
- W3182078573 type Work @default.
- W3182078573 sameAs 3182078573 @default.
- W3182078573 citedByCount "20" @default.
- W3182078573 countsByYear W31820785732022 @default.
- W3182078573 countsByYear W31820785732023 @default.
- W3182078573 crossrefType "journal-article" @default.
- W3182078573 hasAuthorship W3182078573A5004966232 @default.
- W3182078573 hasAuthorship W3182078573A5016780725 @default.
- W3182078573 hasAuthorship W3182078573A5029328817 @default.
- W3182078573 hasAuthorship W3182078573A5032952854 @default.
- W3182078573 hasAuthorship W3182078573A5042992199 @default.
- W3182078573 hasAuthorship W3182078573A5049161615 @default.
- W3182078573 hasAuthorship W3182078573A5060997415 @default.
- W3182078573 hasAuthorship W3182078573A5062053655 @default.
- W3182078573 hasAuthorship W3182078573A5090959478 @default.
- W3182078573 hasConcept C124504099 @default.
- W3182078573 hasConcept C126322002 @default.
- W3182078573 hasConcept C126838900 @default.
- W3182078573 hasConcept C143753070 @default.
- W3182078573 hasConcept C146849305 @default.
- W3182078573 hasConcept C153180895 @default.
- W3182078573 hasConcept C154945302 @default.
- W3182078573 hasConcept C164705383 @default.
- W3182078573 hasConcept C2987047532 @default.
- W3182078573 hasConcept C2989005 @default.
- W3182078573 hasConcept C33923547 @default.
- W3182078573 hasConcept C41008148 @default.
- W3182078573 hasConcept C44249647 @default.
- W3182078573 hasConcept C58489278 @default.
- W3182078573 hasConcept C71924100 @default.
- W3182078573 hasConcept C89600930 @default.
- W3182078573 hasConceptScore W3182078573C124504099 @default.
- W3182078573 hasConceptScore W3182078573C126322002 @default.
- W3182078573 hasConceptScore W3182078573C126838900 @default.
- W3182078573 hasConceptScore W3182078573C143753070 @default.
- W3182078573 hasConceptScore W3182078573C146849305 @default.
- W3182078573 hasConceptScore W3182078573C153180895 @default.
- W3182078573 hasConceptScore W3182078573C154945302 @default.
- W3182078573 hasConceptScore W3182078573C164705383 @default.
- W3182078573 hasConceptScore W3182078573C2987047532 @default.
- W3182078573 hasConceptScore W3182078573C2989005 @default.
- W3182078573 hasConceptScore W3182078573C33923547 @default.
- W3182078573 hasConceptScore W3182078573C41008148 @default.
- W3182078573 hasConceptScore W3182078573C44249647 @default.
- W3182078573 hasConceptScore W3182078573C58489278 @default.
- W3182078573 hasConceptScore W3182078573C71924100 @default.
- W3182078573 hasConceptScore W3182078573C89600930 @default.
- W3182078573 hasIssue "9" @default.
- W3182078573 hasLocation W31820785731 @default.
- W3182078573 hasLocation W31820785732 @default.
- W3182078573 hasOpenAccess W3182078573 @default.
- W3182078573 hasPrimaryLocation W31820785731 @default.
- W3182078573 hasRelatedWork W158826679 @default.