Matches in SemOpenAlex for { <https://semopenalex.org/work/W3182204314> ?p ?o ?g. }
- W3182204314 endingPage "488" @default.
- W3182204314 startingPage "471" @default.
- W3182204314 abstract "Purpose Little empirical attention has been paid to the effects of electronic word-of-mouth (eWOM), electronic referral (eReferral), familiarity and cultural distance on behavioral outcomes, especially within the context of educational tourism. Based on the social network theory, this paper aims to explore the effects of eReferral, eWOM, familiarity and cultural distance on enrollment intention. Design/methodology/approach Survey data ( n = 931) were obtained from educational tourists using a judgmental sampling technique. Linear modeling and artificial intelligence (i.e. artificial neural network [ANN]) techniques were used for training and testing the proposed associations. Findings The results suggest that eReferral, eWOM, familiarity and cultural distance predict intention to enroll both symmetrically (linear modeling) and asymmetrically (ANN). The asymmetric modeling possesses greater predictive validity and relevance. Originality/value This study contributes theoretically and methodologically to the management literature by validating the proposed relationships and deploying contemporary methods such as the ANN. Implications for practice and theory are discussed." @default.
- W3182204314 created "2021-07-19" @default.
- W3182204314 creator A5007791538 @default.
- W3182204314 creator A5041258801 @default.
- W3182204314 creator A5048399269 @default.
- W3182204314 creator A5091557174 @default.
- W3182204314 date "2021-07-12" @default.
- W3182204314 modified "2023-10-10" @default.
- W3182204314 title "Do eReferral, eWOM, familiarity and cultural distance predict enrollment intention? An application of an artificial intelligence technique" @default.
- W3182204314 cites W1628107064 @default.
- W3182204314 cites W1969458660 @default.
- W3182204314 cites W1988811204 @default.
- W3182204314 cites W1994213885 @default.
- W3182204314 cites W2006417653 @default.
- W3182204314 cites W2021994833 @default.
- W3182204314 cites W2032319881 @default.
- W3182204314 cites W2039808961 @default.
- W3182204314 cites W2045825116 @default.
- W3182204314 cites W2051207876 @default.
- W3182204314 cites W2061051906 @default.
- W3182204314 cites W2062554166 @default.
- W3182204314 cites W2072162901 @default.
- W3182204314 cites W2074978722 @default.
- W3182204314 cites W2082848338 @default.
- W3182204314 cites W2086392424 @default.
- W3182204314 cites W2109469951 @default.
- W3182204314 cites W2162437324 @default.
- W3182204314 cites W2167325287 @default.
- W3182204314 cites W2250561557 @default.
- W3182204314 cites W2284056046 @default.
- W3182204314 cites W2320809540 @default.
- W3182204314 cites W2471257796 @default.
- W3182204314 cites W2484733404 @default.
- W3182204314 cites W2530071150 @default.
- W3182204314 cites W2583810986 @default.
- W3182204314 cites W2611309509 @default.
- W3182204314 cites W2615649472 @default.
- W3182204314 cites W2728049570 @default.
- W3182204314 cites W2750319021 @default.
- W3182204314 cites W276545738 @default.
- W3182204314 cites W2767123225 @default.
- W3182204314 cites W2778010719 @default.
- W3182204314 cites W2789786301 @default.
- W3182204314 cites W2790340283 @default.
- W3182204314 cites W2791246868 @default.
- W3182204314 cites W2792336112 @default.
- W3182204314 cites W2792923489 @default.
- W3182204314 cites W2800465824 @default.
- W3182204314 cites W2800472654 @default.
- W3182204314 cites W2869253070 @default.
- W3182204314 cites W2916577999 @default.
- W3182204314 cites W2921565204 @default.
- W3182204314 cites W2941631642 @default.
- W3182204314 cites W2947855034 @default.
- W3182204314 cites W3087158237 @default.
- W3182204314 cites W4205392550 @default.
- W3182204314 cites W94052953 @default.
- W3182204314 cites W958481831 @default.
- W3182204314 doi "https://doi.org/10.1108/jhtt-01-2020-0007" @default.
- W3182204314 hasPublicationYear "2021" @default.
- W3182204314 type Work @default.
- W3182204314 sameAs 3182204314 @default.
- W3182204314 citedByCount "5" @default.
- W3182204314 countsByYear W31822043142021 @default.
- W3182204314 countsByYear W31822043142022 @default.
- W3182204314 countsByYear W31822043142023 @default.
- W3182204314 crossrefType "journal-article" @default.
- W3182204314 hasAuthorship W3182204314A5007791538 @default.
- W3182204314 hasAuthorship W3182204314A5041258801 @default.
- W3182204314 hasAuthorship W3182204314A5048399269 @default.
- W3182204314 hasAuthorship W3182204314A5091557174 @default.
- W3182204314 hasConcept C11012388 @default.
- W3182204314 hasConcept C154945302 @default.
- W3182204314 hasConcept C15744967 @default.
- W3182204314 hasConcept C158154518 @default.
- W3182204314 hasConcept C166957645 @default.
- W3182204314 hasConcept C17744445 @default.
- W3182204314 hasConcept C18918823 @default.
- W3182204314 hasConcept C199539241 @default.
- W3182204314 hasConcept C205649164 @default.
- W3182204314 hasConcept C2776950860 @default.
- W3182204314 hasConcept C2777900618 @default.
- W3182204314 hasConcept C2779343474 @default.
- W3182204314 hasConcept C41008148 @default.
- W3182204314 hasConcept C50644808 @default.
- W3182204314 hasConcept C77805123 @default.
- W3182204314 hasConceptScore W3182204314C11012388 @default.
- W3182204314 hasConceptScore W3182204314C154945302 @default.
- W3182204314 hasConceptScore W3182204314C15744967 @default.
- W3182204314 hasConceptScore W3182204314C158154518 @default.
- W3182204314 hasConceptScore W3182204314C166957645 @default.
- W3182204314 hasConceptScore W3182204314C17744445 @default.
- W3182204314 hasConceptScore W3182204314C18918823 @default.
- W3182204314 hasConceptScore W3182204314C199539241 @default.
- W3182204314 hasConceptScore W3182204314C205649164 @default.
- W3182204314 hasConceptScore W3182204314C2776950860 @default.
- W3182204314 hasConceptScore W3182204314C2777900618 @default.
- W3182204314 hasConceptScore W3182204314C2779343474 @default.